TA的每日心情 | 怒 2019-11-20 15:22 |
|---|
签到天数: 2 天 [LV.1]初来乍到
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
! T# ?2 P' F* }$ {
(1)序列前向选择( SFS , Sequential Forward Selection )
# w$ U0 ^/ B: J( u$ B) A# v" w, P- A6 H0 h+ \5 \9 _
算法描述:特征子集X从空集开始,每次选择一个特征x加入特征子集X,使得特征函数J( X)最优。简单说就是,每次都选择一个使得评价函数的取值达到最优的特征加入,其实就是一种简单的贪心算法。
1 x! {( t4 e% B% p: A5 [! p
X, G: r/ C) @' G* ^
; l( b2 k) T( X0 l9 w0 k: O2 g
5 X3 A8 l9 t0 P' s9 x3 m5 c- d
/ p1 w( C! c9 w0 c$ l
$ [% q1 z: x- I- z0 `3 d+ o算法评价:缺点是只能加入特征而不能去除特征。例如:特征A完全依赖于特征B与C,可以认为如果加入了特征B与C则A就是多余的。假设序列前向选择算法首先将A加入特征集,然后又将B与C加入,那么特征子集中就包含了多余的特征A。
( X1 U: g4 \3 \5 V- ]- k- Z% N5 D1 X5 i2 D6 h
代码:3 p0 O% {' A( w7 g
$ v/ L( z# h, J( z+ O- %----4.17编 顺序前进法特征选择 成功!
- : I6 j, p0 U$ Q$ h# B
- clear;
- clc;
- %--------特征导入 请自行修改
- 6 l2 F" e$ b- z+ x( Z7 `
- M=512;N=512;
- load coouRFeature16_0521_Aerial1 %%%共生矩阵 96.14%
- wfeature{1}=coourfeature(:,1);
- wfeature{2}=coourfeature(:,2);
- wfeature{3}=coourfeature(:,3);
- load fufeature_0521_SARAerial1_512%%复小波 98.26%
- for i=1:13
- wfeature{3+i}=wavefeature(:,i);
- end
- load wavefeature_0521_SARAerial1_512%%%非下采样小波 97.58%
- for i=1:7
- wfeature{16+i}=wavefeature(:,i);
- end
- load wavefeature_0521_Aerial1%%小波 97.65%
- for i=1:7
- wfeature{23+i}=wavefeature(:,i);
- end
- % load rwt_cofeature96_0423_lsy1
- : L' K( K3 X1 a& ^3 i2 _5 `
- % for i=1:96
$ e/ Q9 j" `0 y, p' C( ]: E2 J- % wfeature{30+i}=feature(:,i);
( H `4 v( X/ N) s3 V; n- O7 j. J- u5 J- % end
- ; @/ T5 X+ v3 R/ \1 |$ e. u
- %%%%%%%----------归一化
- * A& y( Z, `, ]3 R& W
- [m n]=size(wfeature{1});
- for j=1:30%一共30组特征 这里 请自行修改
- mx=max(wfeature{j});
- mi=min(wfeature{j});
- mxx=(mx-mi);
- mii=ones([m n])*mi;
- wfeature{j}=(wfeature{j}-mii)./mxx;
- end
- %%---------------SFS 先选4个特征尝试
- , z5 _' ?6 F" r" A& V$ H' @9 X
- chosen=[];%%表示已选的特征
- chosen=[chosen 1];
- Jc=0;%%选出的J值
- for j=1:5 %选5个特征
- J=zeros([1 30]);
- for i=2:30 %一共30组特征 这里 请自行修改
- [mm nn]=size(chosen);
- for p=1:nn
- if i==chosen(p)
- J(i)=0;
- break;
- else
- J(i)=J(i)-sum(sum((wfeature{i}-wfeature{chosen(p)}).^2));
- end
- end
- end
- mi=min(J);
- for i=1:30
- if J(i)==0
- J(i)=mi;
- end
- end
- ma=max(J);
- for i=1:30
- if J(i)==ma
- chosen=[chosen i];
- break;
- end
- end
- end
- save Aerial1_6t_chosen chosen
- [mm nn]=size(chosen);
- tezh=[];
- for i=1:nn
- tezh=[tezh wfeature{chosen(i)}];
- end
- %%%%%%%%聚类
- & A! O( H" {3 |2 Y( N( I' B
- [IDC,U]=kmeans(tezh,2);
- cc(IDC==1,1)=0;
- cc(IDC==2,1)=0.75;
/ o: M, g9 e" _% @- g=reshape(cc,M,N);
- figure,imshow(g);
/ j! {) ~* T; h+ u0 ]/ y" a, {/ ? 6 p( o& }' C' C+ I
* t A: R) N# ]! f- V1 w( u
(2)序列后向选择( SBS , Sequential Backward Selection )
# f7 k+ ^" B8 y ?. G$ C5 @9 Z" X0 W% N& u4 m% P- e
算法描述:从特征全集O开始,每次从特征集O中剔除一个特征x,使得剔除特征x后评价函数值达到最优。
1 P" w7 P$ F$ `% ~3 B: |- V7 \ n9 }$ V# n' d5 X5 x4 X
算法评价:序列后向选择与序列前向选择正好相反,它的缺点是特征只能去除不能加入。; \5 y7 C- Z9 g: C" L/ O0 p
3 } Y1 E: F8 h( }, J. Q- c3 K
$ T! e- C% F6 m$ O# H; f9 |/ z8 V8 v# B
% ]4 r1 i* Q% ^+ ^3 \, X代码:8 i4 @3 k% K* ]
8 T9 G+ i3 x3 O( ]! p- %----4.17编 顺序后退法特征选择
: S1 x7 w' R9 F `' X- clear;
- clc;
- %--------特征导入 请自行修改
- {( l$ `. _' k/ j, |! I3 A- A=imread('lsy1.gif');
- [M N]=size(A);
- load coourfeature_0414_lsy1 %%%共生矩阵 96.14%
- feature{1}=coourfeature(:,1);
- feature{2}=coourfeature(:,2);
- feature{3}=coourfeature(:,3);
- load fuwavefeature_0413_lsy1 %%复小波 98.26%
- for i=1:13
- feature{3+i}=wavefeature(:,i);
- end
- load wavefeature_0413_feixia_lsy1%%%非下采样小波 97.58%
- for i=1:7
- feature{16+i}=wavefeature(:,i);
- end
- load wavefeature_0417_lsy1%%小波 97.65%
- for i=1:7
- feature{23+i}=wavefeature(:,i);
- end
- %%%%%%%----------归一化-归一化
1 e, W& ^9 g4 B3 V- [m n]=size(feature{1});
- for j=1:30%一共30组特征 这里 请自行修改
- mx=max(feature{j});
- mi=min(feature{j});
- mxx=(mx-mi);
- mii=ones([m n])*mi;
- feature{j}=(feature{j}-mii)./mxx;
- end
- %%---------------SBS
- , j5 G1 y6 `8 s
- chosen=[];dele=[];
- for i=1:30
- chosen=[chosen i];
- end
4 `& x( {& G- Q0 ~4 f- {, r( V- for j=1:24 %%删10个,留20个
- J=zeros([1 30]);ii=0; %J(1)是删1的结果,J(2)是删除2 的结果......
- for i=1:30 %???dele 是必要的么???????????????????????%一共30组特征 这里 请自行修改
- [mm nn]=size(chosen);
- for p=1:nn
- if sum(i==dele)~=0
- J(i)=0;
- break;
- else
- for q=1:nn
- if (chosen(q)~=i) & (chosen(p)~=i)
- J(i)=J(i)-sum(sum((feature{chosen(q)}-feature{chosen(p)}).^2));
- end
- end
- end
- end
- end
- mi=min(J);
- for cc=1:30
- if J(cc)==0
- J(cc)=mi;
- end
- end
- [ma we]=max(J);
- dele=[dele we];
- for dd=1:nn
- if chosen(dd)==we
- chosen(dd)=[];
- end
- end
- % chosen=[2 4 5 6 7 8 9 11 12 13 14 19 20 22 23 26 27 28 29 30];
- $ J8 G) ], C, t: H; s( ^# |: {: P
- [mm nn]=size(chosen);
- tezh=[];
- for i=1:nn
- tezh=[tezh feature{chosen(i)}];
- end
- %%%%%%%%聚类
- ; p/ U2 W8 B5 C! T0 S' d3 l5 b# a
- [IDC,U]=kmeans(tezh,2);
- cc(IDC==1,1)=0;
- cc(IDC==2,1)=0.75;
- g=reshape(cc,M,N);
- figure,imshow(g);
- %%%%%%%%%%%%计算正确率
0 Z3 q$ l3 F! O6 e1 g! u5 W! x- ju=ones(M)*0.75;
- for i=1:M
- for j=1:M/2
- ju(i,j)=0;
- end
- end
- ju2=g-ju;
- prob=prod(size(find(ju2~=0)))/(m*n)
- 1-prob& C2 ]* K+ i( ~) y" y
2 r( W" n) F8 s y$ e8 O: F
: t, K0 ^9 O5 p: {3 F. x另外,SFS与SBS都属于贪心算法,容易陷入局部最优值。 |
|