|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
最大信息系数 maximal information coefficient (MIC),又称最大互信息系数。
2 a/ R" I: }) l B4 f
2 n2 o9 i& K1 v! r& y特征选择步骤! U4 a0 \3 l# R0 J! v( f
: G" L7 F2 N/ ~( t* `①计算不同维度(特征)之间的MIC值,MIC值越大,说明这两个维度越接近。( O8 R$ m: g9 H8 z0 Y- A* y
②寻找那些与其他维度MIC值较小的维度,根据阈值选出这些特征。8 o) i' r5 O9 p; D" h6 C
③利用SVM训练/ u5 B7 f, O; D' }( n% Z9 W4 _2 b( Q
④训练结果在测试集上判断错误率
$ p5 {0 @8 W1 `4 O. s. U# p
( H/ O! c) v: V4 C! UMATLAB代码:3 K; l1 u) j+ Q
. T$ _/ o8 l: e2 A3 _" C' \! G
- clc
- load train_F.mat;
- load train_L.mat;
- load test_F.mat;
- load test_L.mat;
- Dim = 22;
- MIC_matrix = zeros(Dim, Dim);
- for i = 1:Dim
- for j = 1:Dim
- X_v = reshape(train_F(:,i),1,size(train_F(:,i),1));
- Y_v = reshape(train_F(:,j),1,size(train_F(:,j),1));
- [A, ~] = mine(X_v, Y_v);
- MIC_matrix(i, j) = A.mic;
- end
- end
- MIC_matrix(MIC_matrix>0.4) = 0;
- MIC_matrix(MIC_matrix~=0) = 1;
- inmodel = sum(MIC_matrix);
- threshold = sum(inmodel)/Dim;
- inmodel(inmodel <= threshold) = 0;
- inmodel(inmodel > threshold) = 1;
- model = libsvmtrain(train_L,train_F(:,inmodel));
- [predict_label, ~, ~] = libsvmpredict(test_L,test_F(:,inmodel),model);
- error=0;
- for j=1:length(test_L)
- if(predict_label(j,1) ~= test_L(j,1))
- error = error+1;
- end
- end
- error = error/length(test_L);
0 L0 Y z) ^" Y |
|