找回密码
 注册
关于网站域名变更的通知
查看: 424|回复: 1
打印 上一主题 下一主题

NSGA2算法MATLAB

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2020-5-20 10:18 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
那个NSGA2的算法不具有普遍性,下面参考课国外的课题小组的代码重新修改了内部冗余内容,使之能够自定义优化函数。 : i2 a/ g6 [: u6 M& r. t( w) W
+ l, E7 |; ]4 I* u2 Q) ~

  H% w. J' k! l; ~NSGA2的过程为:
. s" B% X! @) P# F# `" H# H4 Z# X6 U- W( k+ a/ j5 F' G5 G
1、随机产生一个初始父代Po,在此基础上采用二元锦标赛选择、交叉和变异操作产生子代Qo, Po 和Qo群体规模均为N1 D/ Z- e+ h4 \- ^( ^  ^) t

4 p8 {. J' l7 M  \2 Q6 ]2、将Pt和Qt并入到Rt中(初始时t=0),对Rt进行快速非支配解排序,构造其所有不同等级的非支配解集F1、F2……..
! b$ w! F. {1 F6 w" k; [" B- v" Z; X- ?% V  T4 r) R
3、按照需要计算Fi中所有个体的拥挤距离,并根据拥挤比较运算符构造Pt+1,直至Pt+1规模为N,图中的Fi为F3" e: d5 x4 V& u' c& I& d2 ?
% g& c/ e" P, g: D0 W( c) w
下面是完整版的代码:2 c+ T6 L2 ?9 h; N7 {- u! |; w

1 ]4 Q) n- T9 w①nsga2-optimization.m
: b% a) t- I# r
! g. b: E* O+ d- t" t4 [/ ifunction nsga_2_optimization" Q1 R9 p7 t5 [/ ]4 N" c$ ]9 a8 _- h
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
( Q  Z* L. B( K+ j+ i% p" i%此处可以更改0 t; C5 [( G: O( d( s' o
%更多机器学习内容请访问omegaxyz.com
4 @8 {: f( L! K+ P4 tpop = 500; %种群数量
7 S/ Y' D7 ?3 Q! s# jgen = 500; %迭代次数/ b3 D; W6 E+ G0 g' j. K
M = 2; %目标数量
% g/ x4 @: R7 bV = 30; %维度" e0 ]) ~3 ?- g' F4 A
min_range = zeros(1, V); %下界
' I2 A$ y8 [6 h; bmax_range = ones(1,V); %上界8 W- m1 W# P. P0 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
5 a; M: A/ r$ z$ {. j2 Jchromosome = initialize_variables(pop, M, V, min_range, max_range);
" D" |& W8 O" |% ?+ jchromosome = non_domination_sort_mod(chromosome, M, V);% t, ^% E+ d7 A6 [: @

$ d% J7 k. X/ W8 o, `# A0 `for i = 1 : gen
# c4 R6 G4 y8 j; ~* T    pool = round(pop/2);
- V! h% q$ k" H0 u6 L# `    tour = 2;
1 X7 L9 d' _( U' H$ e    parent_chromosome = tournament_selection(chromosome, pool, tour);! Y4 J: @3 N+ J, H. W7 s# E9 p/ s
    mu = 20;
6 h" Y0 f+ D2 |+ `    mum = 20;3 p7 \4 F0 m% G" b* N& ]0 ?
    offspring_chromosome = genetic_operator(parent_chromosome,M, V, mu, mum, min_range, max_range);" ^* ], x5 A9 p: l5 F+ v- ]3 P
    [main_pop,~] = size(chromosome);8 x" S) G4 D+ x) _$ ]) C
    [offspring_pop,~] = size(offspring_chromosome);
% [) a1 f4 X: j  Q+ m8 e    clear temp& X+ e8 l9 k! |3 e8 `, ?# c
    intermediate_chromosome(1:main_pop,:) = chromosome;
7 Y. S# {6 D% N2 S    intermediate_chromosome(main_pop + 1 : main_pop + offspring_pop,1 : M+V) = offspring_chromosome;
5 s$ Y" q$ J" e! c) k3 H' ^    intermediate_chromosome = non_domination_sort_mod(intermediate_chromosome, M, V);7 r% P; v' C; b$ E+ O8 G! p' o
    chromosome = replace_chromosome(intermediate_chromosome, M, V, pop);
- Z) V7 ]6 V6 a3 N" j: `) g0 h    if ~mod(i,100)
% X, ^* H7 j% }; S7 v( J, @; K0 u        clc;
! L% j+ O0 P! h" b9 U. k8 U0 c6 T4 j        fprintf('%d generations completed\n',i);" g0 N8 N( Y% w% \
    end
# E, R& _% P) a/ Jend
8 m; a8 m$ u5 b; x& R2 ~+ C
! {1 w  w8 O5 z9 F1 Wif M == 2
1 |* ~* ^7 X' W( O! d+ `, v    plot(chromosome(:,V + 1),chromosome(:,V + 2),'*');( x- `2 D5 }* ]2 v
    xlabel('f_1'); ylabel('f_2');1 _$ l# s( Y; O7 g- R# w6 l
    title('Pareto Optimal Front');$ H% V( f! \. o+ ?( B1 a1 H
elseif M == 3
% r+ P/ v8 o0 D/ b! m# d    plot3(chromosome(:,V + 1),chromosome(:,V + 2),chromosome(:,V + 3),'*');
, y7 s4 z  ~4 F# O" ?; L4 K/ y" D    xlabel('f_1'); ylabel('f_2'); zlabel('f_3');
/ h6 S% V/ g- j; Z5 b: l    title('Pareto Optimal SuRFace');- k; \6 c( V) K) A+ {4 ]" N
end
5 p" b" n5 \2 T% V! i9 |1 \
& t. r* B0 m. S( Z% M# N. K0 p: U  F. W/ L" L5 K
②initialize_variables.m1 |- Y& ~  o2 ?' n( O1 ]
# U& T8 J  v! n& M: _( C
function f = initialize_variables(N, M, V, min_range, max_range)7 C+ o" m6 k+ F. Z7 |
min = min_range;
- L; r! S0 j/ x1 O; o6 Fmax = max_range;1 k  C) q9 V- T7 Z3 r7 D5 K
K = M + V;+ Q) b2 m+ p+ ]6 r  \% {
for i = 1 : N
) k- Y* u2 t8 }4 R    for j = 1 : V9 ~' c$ T4 [* j; ?$ c/ J
        f(i,j) = min(j) + (max(j) - min(j))*rand(1);
3 g  @. k3 R$ M$ L7 X    end" g8 w+ g  N0 {. b
    f(i,V + 1: K) = evaluate_objective(f(i,:), M, V);
# a( i# T# c& X1 Y/ c& eend
- P. Y5 u; n( v9 y& {" G) E* B- ~& ^& h% X
) q1 z$ g! O/ o
③non_domination_sort_mod.m% c' B+ _) l  m. D

" \  O$ {* ?. l4 n$ Zfunction f = non_domination_sort_mod(x, M, V)1 L0 _+ r: B' a) X; o
[N, ~] = size(x);: a' b3 A4 S$ y: B+ T
clear m
2 L* t$ \3 `5 |& Lfront = 1;
' \& c+ E% k. A" \( XF(front).f = [];
: ?, j7 u! a: d( dindividual = [];
% n7 G/ l8 S0 R7 i5 O5 C' o* Z( T" ]
for i = 1 : N8 l% n4 p/ {2 D. H2 u1 V0 s. W/ i( W
    individual(i).n = 0;
6 z% G  W6 m2 h% Y    individual(i).p = [];$ r! P, r- m" u2 q" J
    for j = 1 : N
+ a: l! M0 B* z2 _+ \5 z  }/ ]4 w, D        dom_less = 0;
$ n6 M9 S% O" f- X' S        dom_equal = 0;" b' B& _- E# g! j2 n
        dom_more = 0;$ y, ~3 c, J  P! M' R0 ?8 ?) `7 I
        for k = 1 : M7 }" }- l7 m+ m
            if (x(i,V + k) < x(j,V + k))
# M( c( W# X/ H- I! @- F2 I' ]1 L                dom_less = dom_less + 1;8 C$ x5 Z' Q8 |) I6 Q
            elseif (x(i,V + k) == x(j,V + k))
! E8 o2 G/ t1 l0 i; @) L7 d8 t. y                dom_equal = dom_equal + 1;
2 {+ V! c/ f+ L$ ^6 E            else, Y  j" O/ t& ^9 G  j
                dom_more = dom_more + 1;* ?# q: _6 {$ P1 @# b6 u" U
            end) c2 D5 N  [1 L" S& E7 K6 R
        end
  t! Z! U, w2 M        if dom_less == 0 && dom_equal ~= M
* B1 ]  K: a4 N. e$ h. r            individual(i).n = individual(i).n + 1;, S# q4 n/ j6 S+ Q2 B% E5 F
        elseif dom_more == 0 && dom_equal ~= M% z+ x4 E) T" ^  a3 t
            individual(i).p = [individual(i).p j];
' [  I6 R  z, f2 ?! A' x        end- m  l5 ~( H9 U4 Y
    end   5 ?5 A" H2 }& Z% G' A& l
    if individual(i).n == 00 p$ w4 I, o2 b7 z+ R; x; Q- \( u' D' F
        x(i,M + V + 1) = 1;
( j5 F" y4 r2 f' P        F(front).f = [F(front).f i];
* l7 l3 ]. ]9 B4 \. e  a    end
6 I" u; [1 w- m" cend6 N6 R; U! ?3 M* |$ q

5 f. ^2 V+ s1 \9 Lwhile ~isempty(F(front).f)' r9 q$ o. h3 L
   Q = [];
* _" n% Q* A1 H( t   for i = 1 : length(F(front).f)4 n  V: s. i  Y8 f3 z' ~
       if ~isempty(individual(F(front).f(i)).p)1 V: N, J6 v* g& w1 b
            for j = 1 : length(individual(F(front).f(i)).p)
* ^  L' O+ Q1 C( {                individual(individual(F(front).f(i)).p(j)).n = ...
7 q5 J1 X% B/ r                    individual(individual(F(front).f(i)).p(j)).n - 1;4 Y4 ?  W7 b8 A) S4 g* N2 r
                if individual(individual(F(front).f(i)).p(j)).n == 01 P1 K  [1 `) Y- Y
                    x(individual(F(front).f(i)).p(j),M + V + 1) = ...9 p7 ]6 w- `9 x2 R( I
                        front + 1;6 m% i  a8 [( v* M: A2 N
                    Q = [Q individual(F(front).f(i)).p(j)];6 T- p( x: v$ [: v  w
                end* e  T7 i1 U7 ~) j8 h4 g4 U. `  N. h
            end
0 D9 j8 h" {# \1 d2 E       end
2 ?1 J; X: s/ Z  k3 D   end. z! s* E' g: A" F- a
   front =  front + 1;3 Y4 t; `' x! m+ p& m/ k
   F(front).f = Q;" Y+ R7 x7 U$ p; s  K2 a  p* k( J
end+ }8 b. R0 w; v3 j7 H- p+ ~$ N

$ _( t( b! E- j, l2 K' \[temp,index_of_fronts] = sort(x(:,M + V + 1));9 e& S3 o4 r& C: j. A0 O
for i = 1 : length(index_of_fronts)
9 {; p' m4 J% l+ g) k: k4 ~' g# H    sorted_based_on_front(i,:) = x(index_of_fronts(i),:);
: v  P4 M! i) R; vend
" ^4 _6 @8 D+ G0 s* Ucurrent_index = 0;! o# h! N3 g4 P7 V6 K9 U1 q  }
- E8 B# q- G# W  H0 j( D- a  j
%% Crowding distance) n  l6 s8 G# f2 [. `- g
$ g* ^) H7 f" L6 F3 [, ^: c
for front = 1 : (length(F) - 1)8 Y& D* V5 [8 u8 P; G
    distance = 0;1 @* J& I/ p4 s; f0 T
    y = [];
1 ?& h) m2 A( X" s/ r; M" Q8 I    previous_index = current_index + 1;3 p& E/ t* F0 |# ?
    for i = 1 : length(F(front).f)
4 ~" t& Z/ B3 U; G% ]+ |        y(i,:) = sorted_based_on_front(current_index + i,:);7 p" U. V0 e" |" _* T
    end% Y( g' E5 C  z+ Z+ {3 r
    current_index = current_index + i;
/ {5 c2 F7 m. `4 ]    sorted_based_on_objective = [];& ?; `+ K& P# W) s9 `, v
    for i = 1 : M7 @  G, \' ?2 S, c5 E
        [sorted_based_on_objective, index_of_objectives] = ...* G3 A- D3 g# C- q/ W6 K
            sort(y(:,V + i));9 C) [/ w; N1 N1 e: N) u
        sorted_based_on_objective = [];
6 D" a4 r! t" w2 d0 h9 ?* I5 V        for j = 1 : length(index_of_objectives)8 w7 C- S- r, h3 L6 O
            sorted_based_on_objective(j,:) = y(index_of_objectives(j),:);
! u% \6 V0 H, M        end; p9 N' s/ [% ~
        f_max = ...
" _! b! @5 V/ \' k( |            sorted_based_on_objective(length(index_of_objectives), V + i);
" ]4 C& n+ Z( h# k  w        f_min = sorted_based_on_objective(1, V + i);4 O; s: m; m, ]5 `
        y(index_of_objectives(length(index_of_objectives)),M + V + 1 + i)...
7 m' M7 f# \9 T3 |            = Inf;$ i0 V5 N% e! \& a2 H
        y(index_of_objectives(1),M + V + 1 + i) = Inf;
$ d, v" ^' z( I+ k$ e* o         for j = 2 : length(index_of_objectives) - 1
0 |/ ^* ]6 F4 i' J3 F            next_obj  = sorted_based_on_objective(j + 1,V + i);/ ~& O* O: h( d1 Z7 H' o8 N& T
            previous_obj  = sorted_based_on_objective(j - 1,V + i);; P' w& e7 P8 R. N6 T
            if (f_max - f_min == 0)
8 F* K+ H: d" c, n6 u8 F* n                y(index_of_objectives(j),M + V + 1 + i) = Inf;1 i; _. W* W" R6 u& {
            else
+ V" x8 g0 n0 |4 S# k9 {                y(index_of_objectives(j),M + V + 1 + i) = ...7 F; o8 A" i: t
                     (next_obj - previous_obj)/(f_max - f_min);: N# t, T; |) `3 ~" E- l9 }
            end
. W& Y& |) f- o# }9 p+ S         end
- k2 p( T$ M$ n4 E    end
( d" H6 ^4 y2 Z- z. a3 }7 X. w1 M    distance = [];
0 N# `3 I, @& L- x1 R    distance(:,1) = zeros(length(F(front).f),1);
5 P$ j4 C8 f0 s9 o& V0 J  U    for i = 1 : M" h  J" ?2 |: _
        distance(:,1) = distance(:,1) + y(:,M + V + 1 + i);
7 f0 |1 e3 f: J& j  f    end4 S( m6 V9 t5 v7 Z% v) ?
    y(:,M + V + 2) = distance;4 X/ v7 v# o/ J1 t; I+ R% C3 u
    y = y(:,1 : M + V + 2);
/ C( G  J; Q& p/ |' {    z(previous_index:current_index,:) = y;
4 }! [/ o. o8 y0 Rend9 h" `  }0 q7 u+ Z) S
f = z();
! H3 \1 t1 h9 y3 q/ o( o' P% V" h/ l, j! e% K* G& ^9 Q( n

# {' \9 K, M9 B) n3 ~% H④tournament_selection.m) i% \  m( H* s4 l: u. |( X

' a/ J+ @# ?8 }9 C  [function f = tournament_selection(chromosome, pool_size, tour_size)
! B) s& V8 s1 V" m. [0 t1 a/ \! n[pop, variables] = size(chromosome);
5 \) D" q5 H: t+ Nrank = variables - 1;" F% O2 m( j) l
distance = variables;. f  R$ L) ?4 d' ^, M% T: I
for i = 1 : pool_size8 L0 c4 p5 b, \% N- Y; A: }  V2 J( y7 d
    for j = 1 : tour_size4 K' T8 W, Y+ F5 ~+ n
        candidate(j) = round(pop*rand(1));& D+ ]7 ]4 w, S
        if candidate(j) == 0
0 ^* A4 ~5 w# F; z7 [9 }+ |1 @            candidate(j) = 1;
" W$ C& C+ B$ `! }; {        end0 r3 Q. e: ~! M1 ~) q/ t
        if j > 1
. N" k9 B: b4 x: Q3 Q# u- ^6 K: d- M6 W            while ~isempty(find(candidate(1 : j - 1) == candidate(j)))
1 Z  v' ], i8 d6 {/ _                candidate(j) = round(pop*rand(1));# q( w( E2 j9 {  N+ B
                if candidate(j) == 0" S6 f: ?% g7 {9 }
                    candidate(j) = 1;
* ^. Q5 g8 E$ D' J  V+ ^$ k                end
, o" q, H" Z, d3 X& H" _            end) a, L$ O" D; F- ?. K
        end
; N, ]* i4 _( n8 t( y    end
6 Q, ]$ h0 g% W1 q* d- k    for j = 1 : tour_size0 {3 N6 @  s- E! B$ t! E
        c_obj_rank(j) = chromosome(candidate(j),rank);$ s1 c1 R- i$ `: M, P
        c_obj_distance(j) = chromosome(candidate(j),distance);
) u1 |* }* d: {2 ^, i5 i    end
* s# r! X+ }8 d8 `& R    min_candidate = ...- p; Q6 \8 {. Y8 @
        find(c_obj_rank == min(c_obj_rank));6 A" J) g/ {* X
    if length(min_candidate) ~= 14 S  r: j7 n# x1 ?% I; X
        max_candidate = ...- s- p+ k6 h& I3 D
        find(c_obj_distance(min_candidate) == max(c_obj_distance(min_candidate)));
6 p% z: \9 T7 I0 A        if length(max_candidate) ~= 1
! a5 k% W( t6 F8 c  A1 D- W: t            max_candidate = max_candidate(1);
8 d7 M3 A4 ]/ M; H- \* z. L        end6 Y' Y" |5 [& U: J: u$ c
        f(i,:) = chromosome(candidate(min_candidate(max_candidate)),:);- V" E5 T9 R! U
    else# d4 A0 S7 y; M, x! l* c% P, n
        f(i,:) = chromosome(candidate(min_candidate(1)),:);6 Y. v0 S5 Z2 u, O" e8 c
    end
3 b( n! s7 d: x  s  X2 o- R* f2 |6 gend2 t+ V1 I  U! B, U2 v# d# G9 t

& J; m( }9 V1 @) Y
, a$ S" D! a6 L/ M( s⑤genetic_operator.m1 ]" m/ w2 C2 d: S3 K$ h* l2 A- q, C! [
' E0 x+ L0 o3 G# z2 B% \! b* @0 T
function f  = genetic_operator(parent_chromosome, M, V, mu, mum, l_limit, u_limit)9 Y% `7 x: E" T
[N,m] = size(parent_chromosome);% u, e3 g% \0 H! y/ b
( A" q) ?9 z+ T8 t: O
clear m7 \& T- {& Q6 z0 W( R
p = 1;# }6 A4 A1 u( V2 w( ^/ x# e+ d8 D
was_crossover = 0;
  C0 f) L; V7 O" fwas_mutation = 0;4 C$ j3 e. r  q5 |
4 a% R5 A5 B7 _) o* ]" b

9 j7 E4 ]4 l% a: Bfor i = 1 : N& G! [, |# R# H) K: }4 K9 w
    % With 90 % probability perform crossover
' G+ b* g; A% p6 S/ V+ O    if rand(1) < 0.9  j: N4 d4 H  z, M1 ?1 y
        % Initialize the children to be null vector.
2 \, K- j* `- q5 c; n% Z        child_1 = [];9 p! r3 {3 u& D& }
        child_2 = [];/ T3 Y; |6 h" I; f
        % Select the first parent# L2 T: C3 W, {2 }; b# b) a
        parent_1 = round(N*rand(1));8 |2 _0 T! y5 n: y& G
        if parent_1 < 1
: _7 r) c1 [. |0 f            parent_1 = 1;2 w1 M3 W' V. d' k' V( z
        end( p& j3 B! y: G7 ?* H6 |3 U
        % Select the second parent
) T! C# R. l; E- F3 U        parent_2 = round(N*rand(1));
6 U. u6 m" l4 t. Z- Z        if parent_2 < 1
' t0 q8 R/ F: `5 C  a3 d- r# m+ r            parent_2 = 1;8 w0 A  O# L- c
        end0 x, n2 V" z# J9 `- x, v9 ^5 H2 ^
        % Make sure both the parents are not the same. 1 ~- X( M. I1 O) \
        while isequal(parent_chromosome(parent_1,:),parent_chromosome(parent_2,:))
5 |- `: e- P+ |3 w            parent_2 = round(N*rand(1));1 q2 _( U; _1 ~
            if parent_2 < 1
$ W2 D( S6 x7 Z8 ~                parent_2 = 1;
* p. D. o$ E7 Z. l            end
8 D" K" @7 ?' h3 S' N; u' h        end* O& n: e5 {3 h# ~/ t
        % Get the chromosome information for each randomnly selected
' Q: f& t# K( ?6 n0 p        % parents
$ I. M, d* C2 X3 s( f/ k        parent_1 = parent_chromosome(parent_1,:);; N% V8 b8 E: b5 e
        parent_2 = parent_chromosome(parent_2,:);
! a( w* C- G7 d# @" x" O1 O$ A/ S( W        % Perform corssover for each decision variable in the chromosome.
# S" U7 b1 O6 O' R: y/ w; `        for j = 1 : V
8 [8 Z7 l" }4 G1 d            % SBX (Simulated Binary Crossover).
* e- E8 z8 K, @; `& w            % For more information about SBX refer the enclosed pdf file.
" }0 F2 u$ n6 M2 Z1 _- s1 [; M            % Generate a random number
. [2 N% Q( P9 D5 O1 L            u(j) = rand(1);
+ Y( |# B! l' ~  C8 O            if u(j) <= 0.5
, W8 p; V3 a- p: M/ M                bq(j) = (2*u(j))^(1/(mu+1));: h7 z' }( U6 A" ^% _# m' ]* B, o
            else5 u* }: ]) X3 [; a9 B
                bq(j) = (1/(2*(1 - u(j))))^(1/(mu+1));% V( D  i) v% t( o  y
            end
0 a1 V3 }2 t5 S% Y; E' v            % Generate the jth element of first child
  K( X9 }2 [8 C9 b! ?            child_1(j) = ...1 b; \1 i6 o$ `- v
                0.5*(((1 + bq(j))*parent_1(j)) + (1 - bq(j))*parent_2(j));+ k3 K9 D: @; T0 r
            % Generate the jth element of second child8 i4 {- U! J6 y. q# @
            child_2(j) = ...( R$ |# |- a0 p
                0.5*(((1 - bq(j))*parent_1(j)) + (1 + bq(j))*parent_2(j));
9 ~! \2 G/ v4 z) U  K$ I            % Make sure that the generated element is within the specified( ^/ z- g  k" b% n
            % decision space else set it to the appropriate extrema.
! f& D. C: D1 o2 n* c$ \6 `$ n            if child_1(j) > u_limit(j)
! d/ A" a, I' p; _                child_1(j) = u_limit(j);$ ^0 a: a- h( o. s2 e) r
            elseif child_1(j) < l_limit(j)3 o( Z# d4 v" y5 \" H
                child_1(j) = l_limit(j);
1 j6 e. i# y% [$ L" l; L' e            end) \* k5 `! N) x5 ~: D
            if child_2(j) > u_limit(j): ?3 A/ c( ]9 G  E1 I3 _( l
                child_2(j) = u_limit(j);: B6 o" \" i  I, U) l; ]8 h3 Y- U
            elseif child_2(j) < l_limit(j)$ j0 j$ E/ Z& j. W* Q' _0 X- N
                child_2(j) = l_limit(j);9 y: [6 q) M6 i* h
            end2 r) l% D2 O0 E
        end
. O0 I: H; `- u0 U+ p        child_1(:,V + 1: M + V) = evaluate_objective(child_1, M, V);
" @5 |# S0 w1 m) P        child_2(:,V + 1: M + V) = evaluate_objective(child_2, M, V);
' g3 c; U& j. y6 s  T        was_crossover = 1;
# `1 M$ X+ ^, T& B        was_mutation = 0;& D  i4 x  h( r# K
    % With 10 % probability perform mutation. Mutation is based on
9 i" U) j& V. S1 r    % polynomial mutation. $ N0 ~% ^2 U: i" l" H0 T  l# ~
    else
9 B/ ^6 a6 ^) g! R* R. s5 [2 y        % Select at random the parent." f1 {' p; g! U
        parent_3 = round(N*rand(1));+ d/ I2 |, d, L, G
        if parent_3 < 1
0 q$ u" \* i" B( f            parent_3 = 1;4 L/ p8 F6 D: F5 a$ Z
        end
; P, k: z2 A, w# b, _1 B        % Get the chromosome information for the randomnly selected parent.
9 l5 A6 w3 H0 a9 B" K8 V        child_3 = parent_chromosome(parent_3,:);4 _# {. e6 `% A, j- y: S  W
        % Perform mutation on eact element of the selected parent.
4 f. W4 Y, |8 w4 P$ v- b. H        for j = 1 : V, U) y8 t- k- `# G
           r(j) = rand(1);
0 }8 s4 r5 p! i0 }& ^5 D, G% o           if r(j) < 0.59 d1 J6 g& T3 y- `
               delta(j) = (2*r(j))^(1/(mum+1)) - 1;
1 [+ c( |$ ]' o, w           else7 S/ G: z8 E# s: H0 Y- B
               delta(j) = 1 - (2*(1 - r(j)))^(1/(mum+1));# N, g% M& a5 h7 N$ v& z+ i
           end
5 G, T  U2 n1 p           % Generate the corresponding child element.! G, ^* i( Q0 \- j4 Q
           child_3(j) = child_3(j) + delta(j);
# @& {# k- R+ v3 y: N           % Make sure that the generated element is within the decision
& [5 u5 i, f" I  @9 Y1 u5 V8 e           % space.! O0 @$ J& Y9 c+ T
           if child_3(j) > u_limit(j)+ F3 D- @" {/ l) w( [- z
               child_3(j) = u_limit(j);# T8 e  M) R% \" c- t2 I. c
           elseif child_3(j) < l_limit(j)
. _6 k3 z0 I; }' \               child_3(j) = l_limit(j);
$ y, w6 D: H# I+ k           end% T9 F9 ?1 H( p9 q" A
        end7 _# D8 Y- P; Y1 h+ }7 v
        child_3(:,V + 1: M + V) = evaluate_objective(child_3, M, V);  |( F; o& v8 _( K0 k1 N5 K
        % Set the mutation flag3 ^  i9 z; b/ s' c# s
        was_mutation = 1;/ {8 {8 x2 K9 x1 @. w
        was_crossover = 0;- v9 q0 J% ]: f+ v
    end
5 G2 ]9 k* g- [% E/ M5 l    if was_crossover: F: ~7 w) r( J; W$ C. U6 Y
        child(p,:) = child_1;
; i+ ]& }$ O3 H) g& T& M2 H        child(p+1,:) = child_2;# v) Q( @( D+ a4 I, D# q
        was_cossover = 0;% [: b1 X& {2 [- Z$ i$ W/ ]
        p = p + 2;2 g. A  Q$ l" d& P
    elseif was_mutation
8 b& n: O: E9 F8 L0 }6 {0 v        child(p,:) = child_3(1,1 : M + V);
% c$ v1 i& |" t; e        was_mutation = 0;: O: y) E% a; F% k1 h4 |) K
        p = p + 1;
1 r6 G$ P+ d' E5 `    end
/ z7 J, t+ d8 kend% f( a7 @' q8 F8 J7 V: P
f = child;
& y( y2 M2 S0 d) P2 y# v+ t5 ?" o% V
! a" b& Z. n0 p8 S2 e
: k9 f8 ]8 Q0 x5 o- K( O⑥replace_chromosome.m+ |# F: S) n$ L* U" u/ J5 U! E
% K% I+ R3 v" N1 S+ ^
function f  = replace_chromosome(intermediate_chromosome, M, V,pop)
0 _% U1 y  x( i( ~- X6 Q. d; a2 K
- W. X( b4 r8 j. c( w. }4 q3 t
[N, m] = size(intermediate_chromosome);: E" |* }' Q2 S- Y

' d/ L& q; K! b2 \% Get the index for the population sort based on the rank8 t1 M/ a+ p) X" s; E
[temp,index] = sort(intermediate_chromosome(:,M + V + 1));
8 Q! z' V% Z# |. M. @; o6 Q7 P0 C3 N9 e8 G3 m( T4 o2 F- V
clear temp m
, k3 `; H' q3 N) X7 G5 A& H6 |5 T2 r: q7 y8 Y7 `
% Now sort the individuals based on the index' z! l' E+ H" V1 Z, k5 v
for i = 1 : N+ P# v6 I7 E+ q! x
    sorted_chromosome(i,:) = intermediate_chromosome(index(i),:);9 R; l/ \9 \# @6 O
end$ X) _1 \; U5 G) r5 H

# f- Q1 ]" B$ D" o* H' w# ?! Q6 w% Find the maximum rank in the current population
0 ]) p) d4 ]9 q3 Omax_rank = max(intermediate_chromosome(:,M + V + 1));8 L0 ]5 O) L. _/ x, v2 r

! o0 w) m, k1 }5 B3 ^" M% Start adding each front based on rank and crowing distance until the
/ m& A$ I; p, d% whole population is filled., n- `& Y1 C' W# A  c, A5 g" B; x$ y
previous_index = 0;! C+ P* A/ D5 `
for i = 1 : max_rank
# S. ~2 {' Y' Z$ Q5 f0 x7 H: x    % Get the index for current rank i.e the last the last element in the( B+ k' N; {( w. P5 p
    % sorted_chromosome with rank i.
  n" X2 }2 p4 f) Q7 j& V- P    current_index = max(find(sorted_chromosome(:,M + V + 1) == i));" s4 _' S& F" r7 |5 k6 ]
    % Check to see if the population is filled if all the individuals with
) |4 s( d. K1 i* F    % rank i is added to the population. + W* E, l" j, R+ l( z/ Q
    if current_index > pop( z" \% ?  ?, k2 f
        % If so then find the number of individuals with in with current
/ l& T+ ^, C7 ]3 f$ |- g; x) R        % rank i.
3 O/ M* f8 S1 C, g        remaining = pop - previous_index;( Z- I" H2 g2 J3 U* `
        % Get information about the individuals in the current rank i.
( q( ?% G/ Q0 N+ G4 B# u6 t        temp_pop = ...
9 {7 T# i! s: ^( T' P& |$ g1 ~            sorted_chromosome(previous_index + 1 : current_index, :);: t3 A  Q& w' d3 F  G+ ~
        % Sort the individuals with rank i in the descending order based on
& L" v% V7 n0 E9 k+ ~        % the crowding distance.
; D: n+ Y( h/ q+ u" ?5 i/ D* F8 X* i        [temp_sort,temp_sort_index] = ...
0 g( N* z8 ^: I# L* e: x            sort(temp_pop(:, M + V + 2),'descend');
, e" S% X7 Q- H7 d        % Start filling individuals into the population in descending order- k/ J# d& [2 [  _& w2 r$ H4 Y
        % until the population is filled.+ \' |: |$ g; A- w
        for j = 1 : remaining
! ]1 @$ G9 [3 Z            f(previous_index + j,:) = temp_pop(temp_sort_index(j),:);" E$ {/ ^" _5 m/ K  [7 q# @9 x" |7 z
        end, G1 @" _) Z: ~8 ^* R: H7 e
        return;
3 ]1 E1 ?8 I$ {5 a- Z) d    elseif current_index < pop
  o, s: A6 P. i/ o' J        % Add all the individuals with rank i into the population.
7 Z7 l5 I- l0 P3 e: n        f(previous_index + 1 : current_index, :) = ...
5 n' R% P, {5 p6 d3 v# X/ U) X            sorted_chromosome(previous_index + 1 : current_index, :);2 a) D" O4 S; _  j9 G
    else3 ^* ^' D1 ?3 d# N
        % Add all the individuals with rank i into the population.
2 ~3 _- o' c; a  ]  P# P        f(previous_index + 1 : current_index, :) = ...
9 B2 ~% c: p  x: u            sorted_chromosome(previous_index + 1 : current_index, :);
9 k- f  ?6 p* k& Z1 n+ U% A        return;
8 ~0 _5 ]  C4 D' L+ W    end
! p5 ]* x. O+ @8 U8 w    % Get the index for the last added individual.- @. G% `8 v0 D, k
    previous_index = current_index;
6 u5 T( p5 A2 B* I6 g0 wend# I' u$ R+ ^9 j/ w0 o2 {% J

2 s+ T+ B  i2 x3 C5 ]3 H8 X! M' E+ ?, w9 S
⑦自定义评价函数(我选用的ZDT1函数)
' y/ @! G0 Q# y- {1 ]0 e+ l8 J, y# s9 S
function f = evaluate_objective(x, M, V): E' z: C0 r; x. i/ `9 f
f = [];
8 s8 f+ I) H' `! ~0 Wf(1) = x(1);( J: h9 j- f0 b1 T
g = 1;5 F# x' k# k" ?' S( n1 C, F
sum = 0;0 H2 q8 _, L8 j) @7 `, U" \% z
for i = 1:V% E5 |1 b( ]9 V  s' I$ b: C
    sum = sum + x(i);
8 r+ X4 z9 V6 Send  I6 `, ^, S9 Y: `4 C9 J" e$ N: ^
sum = sum + 9*(sum / (V-1));4 s/ g  g3 y" Y* F- h# Y/ \9 Q
g = g + sum;
" E* c* t/ f& ]f(2) = g * (1 - sqrt(x(1) / g));
3 N  R" e. s& s$ p- @8 ^7 Q' }- dend
! V7 l7 t, p) |' c, ]# v! D, m: L1 u% ]! n2 s

( _5 {4 [, T/ v/ ~4 M0 b500个种群运行500代的结果: $ G( T: j% j. @7 S
0 \2 J! G9 Q: _9 O" A
/ K) I* v; w" w! r; Y

8 j# r8 c) o! T7 }6 D$ o3 K
% l; c, V. M! n5 @9 A1 |+ m
2 |" w; o, [0 m7 M  `! I9 J: P
+ ^; ?+ v0 }0 P

该用户从未签到

2#
发表于 2020-5-20 13:09 | 只看该作者
NSGA2算法MATLAB
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-11-24 11:22 , Processed in 0.203125 second(s), 26 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表