|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
# _ B1 t% s" M. h, E
函数参数 n:贝塞尔阶数 k:要求零点的个数 kind:第几类贝塞尔函数
* S" q+ O4 B: Y3 ]$ s u$ x* }
7 h0 x8 C% c' s3 Jfunction x=besselzero(n,k,kind)1 D( I" }! R( Y2 @4 H
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%9 M- d# o* _ K2 z
%8 E7 y+ q+ I( ^# T
% besselzero.m
. P4 \# `, g6 B" m%
; o. Z# j1 ^& c: t, ?8 G6 l" [: c% Find first k positive zeros of the Bessel function J(n,x) or Y(n,x)
; ]. D2 }2 U7 M% using Halley's method.
, R, D6 t# Z# i' h%: d9 `' Z7 k9 S3 ]+ @
% Written by: Greg von Winckel - 01/25/05( r3 |% X# `9 V4 E. C& I
% Contact: gregvw(at)chtm(dot)unm(dot)edu
- r. f7 ?8 x# Q0 L! X3 p! ]%/ K0 R6 V! D' i: E7 |9 I
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
, f9 M, P; D4 nk3=3*k;1 [ b7 C! [3 @( T4 ?' e
x=zeros(k3,1);
" n+ R" B5 d) K9 j9 tfor j=1:k3
7 P9 Q: s0 `, ^
3 F5 z, ?( r! b0 s % Initial guess of zeros
4 x8 ]8 A. o7 ^1 |9 j" Q; _ x0=1+sqrt(2)+(j-1)*pi+n+n^0.4;6 c8 U3 ]2 F1 r- z
, ?* {( c, I$ r& X* F m % Do Halley's method
8 I6 _# q; E0 }. E& @) J x(j)=findzero(n,x0,kind);
& k g- B( `9 O1 M1 `7 s$ w if x(j)==inf1 s3 d. b( p4 z7 |/ W& u# Y
error('Bad guess.');
6 o% \! a! z p0 G$ P1 E1 \- i. J5 X' z end
8 X O4 p% \4 \. E) `6 H- s' u
# k( ? c* \" f0 Qend7 W" S/ c0 |" p2 V
x=sort(x);5 _3 H9 x' H2 L% [3 d
dx=[1;abs(diff(x))];8 C0 X9 h4 w9 S& s
x=x(dx>1e-8);
7 s6 ?. T% H( y+ Q- z% [' ux=x(1:k);
, b: t5 t# n& ?5 R( R. }function x=findzero(n,x0,kind)% ?+ g( m. w* r& E0 w u( [/ A
n1=n+1; n2=n*n;
& V" E! O, d) l% Tolerance
6 U3 f; x) E, _& W2 a7 d3 dtol=1e-12;
. \. V% q6 v. Z- `2 J# c% Maximum number of times to iterate6 K4 P* @: Y" U
MAXIT=100;
) b" k+ |, o x# }! B2 W( C/ r& ?% Initial error
0 r; l6 {$ Y: i+ z+ I$ Z; I* r$ x: serr=1;$ A! d7 A' V0 z. Z; c
iter=0;2 |" f4 |1 Z! a( }. A: C `
while abs(err)>tol & iter<MAXIT
% p, N W- S' P( {) |2 X: q / r6 J6 S, W) ^- E
switch kind! l. g- f- x( i' c
case 1. J. Y7 u2 }* l: ]; w5 k
a=besselj(n,x0); ) Z; z, k' n" V# p1 T3 x
b=besselj(n1,x0);
& J/ w( R0 R! Z case 2
/ }. d" r" d3 N+ O/ `8 S( O a=bessely(n,x0);: F( W) x& D1 E. U
b=bessely(n1,x0);1 g7 b8 J7 E! E# y0 @
end E2 N- E, T/ _3 D; n& J% `
, h& {* i; {# S, c x02=x0*x0;
$ j8 ]) o; U }2 l- c- h; E 0 i! h; z# I- p5 n# W* M
err=2*a*x0*(n*a-b*x0)/(2*b*b*x02-a*b*x0*(4*n+1)+(n*n1+x02)*a*a);( s( S7 H. \9 k$ B9 S
: n$ F9 d5 p% B. {) f6 s
x=x0-err;
, s- a# |: M0 d! ]6 E8 V$ o x0=x;* d& A7 Y/ Q' z9 k! `" g
iter=iter+1;
# o, Y8 y; H9 ^$ Q) F7 D
) _/ o4 m' O5 [1 o. |5 P1 @end
! X6 {: e8 r# u) {/ jif iter>MAXIT-14 l$ j9 e" W& t! U6 L( X
warning('Failed to converge to within tolerance. ',...
# p1 X. J! p0 \4 | 'Try a different initial guess');+ H( u& t1 j: V& N) g- r9 w
x=inf;
7 M: W3 }+ Q3 G( g/ R1 e4 m0 V+ Cend7 }. b7 A0 N2 I" ]" Q& Y1 t
+ M+ e* Z; v& A* S9 m
|
|