|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
! m+ e' x% t5 t8 J( e% q8 E6 p4 F5 N
norm
2 B, q0 j; J2 m9 {2 L" KVector and matrix norms* {* u6 R8 y/ ^6 o, T+ d+ G
' B: T6 J* M% K! V L, h2 E
Syntax
2 u$ e% Z6 [9 k2 p- |7 _% S8 X
% C+ s8 i @) J% Jn = norm(v)* V# R. O% I ]( W! l
. a* I. Z2 d: Q1 X$ p6 T$ Gn = norm(v,p)
" a0 F3 k9 I! M1 R2 a
) B& l& @4 L3 Q+ Nn = norm(X), a3 w" o! e( d
- `1 V6 a* d/ | F8 |n = norm(X,p)! z4 v: S- ] i2 @6 N' R
; u7 |2 |9 N' a9 o1 u- w7 j, k5 `4 `n = norm(X,'fro')
1 y4 z+ d% y1 U9 ]% M9 i3 @" m* x5 g, c. A+ C3 g
Description
& U9 u" g5 B* V9 F# Q+ v7 G; H- V! w
n = norm(v)返回向量v的欧几里德范数。该范数也称为2范数,向量幅度或欧几里德长度。
9 _1 c2 `9 o9 C% I# b$ n+ p! i* S8 N, H( {7 j
n = norm(v,p)返回广义向量p范数。5 u! H s9 @7 T
. f! ~* a0 }8 k w+ A1 {& B
n = norm(X)返回矩阵X的2范数或最大奇异值,其近似为max(svd(X))。8 k2 p7 r$ r& V
& ?* A: Q: Q$ p4 W/ I. i/ _+ G
n = norm(X,p)返回矩阵X的p范数,其中p为1,2或Inf:/ y2 h& d$ U3 _3 C& W. c) ?+ s
% x1 C+ b+ r8 _! |* g
- 如果p = 1,则n是矩阵的最大绝对列和。
- 如果p = 2,则n近似为max(svd(X))。 这相当于norm(X)。
- 如果p = Inf,那么n是矩阵的最大绝对行和。
' K7 A5 _8 U' q$ P& c, a ! U! v( P" y8 C
n = norm(X,'fro')返回矩阵X的Frobenius范数。; ~! X7 _) b1 G5 h6 K3 ?4 {1 I
" j( q& N, F8 c有关范数的基础知识,见上篇文章:MATLAB必备的范数的基础知识/ r- P, t7 C4 S+ i4 t: @& y5 M
/ l7 d# g' Z- F0 ~2 ?, C0 w
下面举例说明:2 X$ k; o! e* y% O& `# w
# E( k9 h- f7 O8 ^& [! I! Z+ s& J
Vector Magnitude(向量幅度)
& G/ F3 P: _% E) w3 `+ r7 v/ g, B! l' `* ^; S9 C. Q; j; s
- %Create a vector and calculate the magnitude.
- v = [1 -2 3];
- n = norm(v)
- % n = 3.7417
" c8 j3 R/ }4 o! e# m; D% p( ^0 Y F# y! w2 [: e1 q+ L6 B+ {5 s
7 m4 {* ]( ~6 [, m9 ~1-Norm of Vector9 q" I- ^& q- y# x
+ a Z9 G" j) }- clc
- clear
- close all
- % Calculate the 1-norm of a vector, which is the sum of the element magnitudes.
- X = [-2 3 -1];
- n = norm(X,1)
- % n = 6
/ ?' `0 z/ \$ \5 z
% }9 y1 H7 ^; qEuclidean Distance Between Two Points
9 @0 X: ?9 {, G" r& l" O# X# R. M6 Z( x$ m/ Q1 Y; d# x
- clc
- clear
- close all
- % Calculate the distance between two points as the norm of the difference between the vector elements.
- %
- % Create two vectors representing the (x,y) coordinates for two points on the Euclidean plane.
- a = [0 3];
- b = [-2 1];
- % Use norm to calculate the distance between the points.
- d = norm(b-a)2 b2 n8 I1 M0 ~, {& `4 b
" d; n8 s" o3 H) |* x# c
d =
y. o( f, T% X$ ?, @" C0 t# ~" ?* ~* q- m5 _
2.8284! z# ]% d- P) C: I z5 }) g
2 t8 }$ ]% {1 Z, f几何上,两点之间的距离:
- e3 }& ?! j9 }" S1 W3 _5 t$ i! d( x: j) A
- ?( [' q- D3 J) }# k$ v9 m, k
( a* j$ v5 _6 O# W+ c. N a; n
8 e3 \# K+ a, a p8 @2 d$ F& f2-Norm of Matrix2 k1 F! y+ |5 i N4 \+ G4 x* w
6 ~/ h& l( y: E) j o
- clc
- clear
- close all
- % Calculate the 2-norm of a matrix, which is the largest singular value.
- X = [2 0 1;-1 1 0;-3 3 0];
- n = norm(X)
- % n = 4.7234% G' N( u: y: R: J" B
6 d' s3 a7 A4 L: U, e1 n2 F VFrobenius Norm of Sparse Matrix& b4 i# w4 f- E
# X; q% K$ ?2 e. o4 E
1 ^( z) n5 `3 Z+ { B& C- clc
- clear
- close all
- % 使用'fro'计算稀疏矩阵的Frobenius范数,该范数计算列向量的2范数S(:)。
- S = sparse(1:25,1:25,1);
- n = norm(S,'fro')
- % n = 58 j T6 t u3 I; A
; I/ t2 V5 v- \5 T- {" j* \1 h
0 {3 {2 @' _5 I/ j; |$ \6 _5 \( O. m, q; N" y
|
|