EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
本帖最后由 mytomorrow 于 2019-12-10 10:08 编辑 : B. Z% f& z' X& ^% _3 q. I0 D5 t
! Z2 {* \" {8 r, m8 s, e
目录 ifft Syntax Description
0 T. _. Y+ b8 D
2 R8 _* V) W7 \: f' u% D% [
ifft
/ Y7 t( r" n# i. F
Inverse fast Fourier transform $ W5 M# y2 O& j9 H
6 o1 |, y) U' U* s
Syntax
7 @$ G5 f# ^: m$ }+ o
X = ifft(Y) ' {3 Z p8 j4 n8 e3 Y
X = ifft(Y,n) + i. I* d% ]& G; l
X = ifft(Y,n,dim)
5 ]. P8 A4 n" w$ T3 b# h* _
X = ifft(___,symflag) / @& M) v) P; ?+ @5 `
f& ~2 P& ~- A$ ^3 V* t5 z
Description 7 u) m5 \ C- c1 u4 _! l
X = ifft(Y)
9 o1 p0 P8 M! P$ Z- P+ i
X = ifft(Y) computes the inverse discrete Fourier transform of Y using a fast Fourier transform algorithm. X is the same size as Y.
. P. i( i) E7 B- j* F9 X* z0 C! T
- If Y is a vector, then ifft(Y) returns the inverse transform of the vector.$ Q& f* D: l* `3 B
3 @6 T( H' U4 N' b! y! ^0 m; s
- If Y is a matrix, then ifft(Y) returns the inverse transform of each column of the matrix.; C- [) [7 V+ w, t4 |. ?
( Q: R) V* K5 [# R1 ?1 ^
- If Y is a multidimensional array, then ifft(Y) treats the values along the first dimension whose size does not equal 1 as vectors and returns the inverse transform of each vector. Q% {3 W9 I& `% c+ \! r
: x( \% R0 q7 o5 U' o4 @" l
本想翻译一下的,但是手册里面的英文描述的太清晰了,单词也很简单,所以就这样直接看吧。
$ I! Z* S) f- {; K9 m$ e
X = ifft(Y,n) returns the n-point inverse Fourier transform of Y by padding Y with trailing zeros to length n. ! O. `' J) b, v' t
X = ifft(Y,n,dim) returns the inverse Fourier transform along the dimension dim. For example, if Y is a matrix, then ifft(Y,n,2) returns the n-point inverse transform of each row. 6 h, V8 _3 W9 N# E/ r/ g
X = ifft(Y,n,dim)沿维度dim返回逆傅立叶变换。 例如,如果Y是矩阵,则ifft(Y,n,2)返回每行的n点逆变换。
! H9 J' P, n$ A) I/ I6 [4 o1 m
X = ifft(___,symflag) specifies the symmetry of Y. For example, ifft(Y,'symmetric') treats Y as conjugate symmetric.
0 Y; V: D7 R; U( g! o: k
X = ifft(___,symflag)指定Y的对称性。例如,ifft(Y,'symmetric')将Y视为共轭对称。
) w7 @6 i* E8 e- n1 s/ R3 e
3 @9 A. Q% h% T* Q$ ~
9 e* U& [# S! _6 J% d0 e1 Y" |4 K) p3 D# Q+ D; P! b8 H1 k0 E
|