EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
% c9 @7 H2 v8 K& g* y传输线 巴伦
3 w* C* b' x6 ]! u
3 ?: m7 k. t- n1 Z T9 y/ d! A 9 p [) |5 o1 q3 A2 K
1.基本原型:
" m" W6 J7 d. N
* ?7 n! i- C0 O) a, f! e; o
6 p9 W6 `7 ~3 s1 D2.最佳传输条件:; ?- x D6 j- e
% K, _; w& d. i- y& r. S) a 8 \- f/ ?* l A. u3 c3 s
2.2 传输线长度l应尽可能地小,工程设计中一般取<λ/8
( n) O+ y+ }5 A5 F* G $ k- H; y5 N+ e
3.相关公式
+ p2 x8 w l- O3.1传输损耗公式:
: E6 Y5 I; j- t9 x, T% K* _ - b9 K' v N( o* G& k' N( R. C9 C! j
7 X3 O! _# a) L4 ~! H
9 E0 S$ ~) H$ z f$ b4 T
3.2反射损耗公式为:
' Y; ?9 E% H3 U' {. L' t
! h( Z1 e# S7 Y, J% c; G
3 q$ Z0 d( o8 S: Q6 k式中。Rg为源阻抗。L0为空芯绕组电感,μ’为磁导率实部, μ”为磁导率虚部。磁损耗角正切tanδm=μ”/μ’。选择μ’高、tanδm大的材料能够 同时满足传输损耗、反射损耗的指标要求。 ' a: ^6 l6 O+ A2 }$ ?8 D5 O
+ }, r6 q1 j0 Q* k7 y0 w
3.3磁导率
; g4 g9 {" n; v% r6 Y6 v2 ~铁氧体磁芯磁导率随频率变化的影响:
; p! \7 l0 E6 e磁导率随频率 变化的公式为
# i' }8 \" n* o0 l1 c
/ b) |8 h0 P! @+ [. r
1 B/ z2 A) t4 n6 V* `) h& P) u
( ]' ?& `* T ~% K/ S式中,S为斯诺克常数,,fr为截止频率。
( U2 Q- l! O3 m3 X( O7 a 9 i2 E+ R G6 ]* ~9 l5 S& ~
将上式代人传输损耗公式进行分析得知应选择截止频率低、斯诺克常数高的磁芯材料。 4 o- u/ x: E# o. E8 U, R
8 u3 s% R$ U) E
综上所述,可以得出磁芯材料的选取原则是要求低频初始磁导率μ’高、截止频率fr低、斯诺克常数S 高、损耗大tanδm的材料。 2 w( p- d( q. O, J) d' l8 {
+ \8 x: d% t) i4 t1 b7 V
: x8 ~! |8 l- Z3 T- Q3 M6 ^
2 k2 T, Z. E, X9 h$ a6 ^& s4.ADS 中低端巴伦模型
3 i! i) S: k" {2 g6 f8 `( Q
/ R) z* C4 h, V3 ZBALUN1 (Balanced-to-Unbalanced Transformer (Ferrite Core))
y( | c F f, i# JSymbol
5 ^% Q' a9 F% r9 f9 U0 v) r. e! B5 s) q
Range of Usage F, Y2 c: N6 f( j1 K) |; }
Z > 0, Len > 0, AL > 0
2 }) I, `/ a/ z1 P' j3 ^2 qK ≥ 10 e+ s. X* X# i8 h7 ~
A ≥ 0
( h' g( F( F$ k# ~, Y: E: qF ≥ 0
& ?9 l% [3 I% k& G. L3 X! {7 G, QN ≥ 1 3 J3 D+ ^2 ?+ B+ M$ N; b
Parameters : X8 p1 ]/ f- x1 W1 A" A3 K( o
| Name | Description | Units | Default | | Z | Characteristic impedance of transmission line | Ohm | 50.0 | | Len | Physical length of transmission line | mil | 12.0 | | K | Effective dielectric constant(有效介电常数) | None | 2.0 | | A | Attenuation (per unit length) of transmission line | dB/meter | 0.0 | | F | Frequency for scaling attenuation | GHz | 1.0 | | N | Number of turns | None | 5.0 | | AL | Inductance index(电感指数) | nH | 960.0 | | TanD | Dielectric loss tangent (介质损耗角正切) | None | 0 | | Mur | Relative permeability (相对磁导率) | None | 1 | | TanM | Magnetic loss tangent(磁损耗正切) | None | 0 | | Sigma | Dielectric conductivity (介电导电率) | None | 0 | | Temp | Physical temperature | °C | None |
) ^0 J' h, a, L: h* y U8 \· This component is a length of transmission line(specified by Z, Len, K, A and F) coiled around a ferrite core.
( D% M# L, N9 v% ^/ Z* n. oChoking inductance Lc accountsfor low-frequency roll-off and is given by, L/ T7 Z6 X4 m* O) b
Lc = N2 × AL, G% G/ r& W- Q3 R4 n% l
A(f) = A (for F = 0)
% h- S1 w4 E" p2 F$ O6 rA(f) = A(F) × file:///C:/Users/wanghai/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png
7 r. u' O2 g& L. g(for F ≠ 0)6 E f- f2 W' N$ ^7 h4 [
where. F' x- L5 B. R9 |* I- ?( {1 `' \
f = simulation frequency
& N1 x' Q' g1 B- O W9 a- EF = reference frequency for attenuation 7 {' D# H4 S1 B7 x
For time-domain analysis, an impulseresponse obtained from the frequency-domain analytical model is used. Thiscomponent has no default artwork associated with it. 7 {6 u& k; a- m; q
· The "Temp" parameter is only used in noisecalculations.
& M r0 @) p1 F* d) K! }' Z· For noise to be generated, the transmission line must belossy (loss generates thermal noise). & a& { T/ c+ y# ]
( c: H0 H$ I6 r, `
0 A4 L: E+ n8 j) {9 M5.小节:' b' N: |8 X6 g0 w. m
调节ADS 中的参数可以仿真出巴伦对应的传输损耗; . u: [5 k0 G- I5 G* X
介电常数环节需要进一步讨论;.
; b9 k& F+ o( ^$ j, A7 X! \ * Z S8 Z& p) y
" t {; U7 M5 T3 l |