找回密码
 注册
关于网站域名变更的通知
查看: 1062|回复: 3
打印 上一主题 下一主题

EMC精品书籍分享贴

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2018-12-23 22:33 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
1.电磁兼容导论英文版. A2 F9 d. }0 m# f: ^* E
《电磁兼容导论》是机械工业出版社2006年出版的图书,由保罗编著。本书全面系统地讲述电碰兼容(EMC)的基本原理及其应用。
5 ]% F- c# o/ R7 c& L本书全面系统地讲述电碰兼容(EMC)的基本原理及其应用,包括EMC概论、电子系统的EMC要求、电磁场理论、传输线、天线、天件的非理想性能、信号谱、辐射发射和敏感度、传导发射和传导敏感度、串扰、屏蔽、静电放电、的系统设计等内容。本书讲述深入浅出,配合典型例证,实用性强。可作为高等院校相关专业电磁容课程教材,也可供EMC设计开发人员参考。9 m$ |+ I( ?) P( F
0 S' X9 Q  S- e+ N1 t. t) Y, t
Contents
: ^8 i8 E8 w' O9 P% k& z7 HPreface xvii+ ?  u2 B8 T  l" i1 r: _
1 Introduction to Electromagnetic Compatibility (EMC) 1
# U' ]3 }* O3 g1.1 Aspects of EMC 3( z1 P0 e# [0 |. C4 v
1.2 History of EMC 10$ J2 T0 b. J  l2 I7 e& m
1.3 Examples 12. y  F+ T2 |: |3 n* {; X: Z
1.4 Electrical Dimensions and Waves 14/ j4 \" @2 P" s. W3 g5 O- R
1.5 Decibels and Common EMC Units 23
; p4 E6 L2 B5 s& q2 C% Y1.5.1 Power Loss in Cables 32+ ~1 k  z* M- T5 w- V) z
1.5.2 Signal Source Specification 37
- Q  ]1 m. `/ i: X/ N/ CProblems 43. K5 q  |% J$ n8 G4 R
References 48
/ ?* l. [2 l5 r0 j2 EMC Requirements for Electronic Systems 49+ W+ b- R# T2 P8 L/ H% ]
2.1 Governmental Requirements 50
* ]: P9 ~6 R( A2 y" a" t2.1.1 Requirements for Commercial Products Marketed
' ]% F4 a8 D1 ?: |. W$ Din the United States 50
# p- |" I0 |- H& e2.1.2 Requirements for Commercial Products Marketed
6 T$ n: I4 I" y  I9 f- |# ^$ Toutside the United States 55
, E7 o! }. e: h3 x* [) n$ g0 z2.1.3 Requirements for Military Products Marketed in the2 M! g; r& @' p8 E- g
United States 60
- s+ v- X$ a6 \: k' Q5 V. f. [2.1.4 Measurement of Emissions for Verification of Compliance 62- |! i! i: S3 l1 j
2.1.4.1 Radiated Emissions 64% s* U) ?# E9 @& q) \- P0 t
2.1.4.2 Conducted Emissions 67
( I5 F) @& j6 q2 e6 w( A2.1.5 Typical Product Emissions 72: H1 i; ]$ D$ \( k9 {, [
2.1.6 A Simple Example to Illustrate the Difficulty in Meeting
7 p& k; i& z9 V8 v2 `# Sthe Regulatory Limits 781 |0 Z- e7 P) T! ~) x
vii: ]7 C. J! \4 o0 i. ^, m1 J7 ~
2.2 Additional Product Requirements 79
% k( m/ l% _5 M& J* ^2.2.1 Radiated Susceptibility (Immunity) 81( W6 `& H. `1 N0 u$ c3 X
2.2.2 Conducted Susceptibility (Immunity) 81- H5 z( j6 L7 C0 L# L2 P
2.2.3 Electrostatic Discharge (ESD) 81) k) s5 m+ d; C- a& b
2.2.4 Requirements for Commercial Aircraft 82( G% E' s/ G* b5 j; n3 K
2.2.5 Requirements for Commercial Vehicles 82
4 {& }( @; `/ ^4 a$ c  F, l+ z2.3 Design Constraints for Products 826 w# h: d# _" V6 t6 q( M# d
2.4 Advantages of EMC Design 842 j2 v* Q1 J, ^$ ], v6 U
Problems 862 w/ R& u* f& {5 o
References 89
- ^# |6 Z' I1 z% U2 Q# V  h3 Signal Spectra—the Relationship between the Time Domain and
7 z3 s/ ?. C% ythe Frequency Domain 91. E0 s" g. Y5 I2 o9 U: [7 t: K
3.1 Periodic Signals 91
2 l& O0 G7 p& `6 |3.1.1 The Fourier Series Representation of Periodic Signals 94
/ F4 U/ e3 \7 P0 J% q! F: X3.1.2 Response of Linear Systems to Periodic Input Signals 1044 I. t# h( i2 k  @2 l- a1 G; D
3.1.3 Important Computational Techniques 111
' J) y4 a, F! c2 z$ ]3.2 Spectra of Digital Waveforms 118
; `4 W$ L8 D& b- ~( Q3.2.1 The Spectrum of Trapezoidal (Clock) Waveforms 118! Z0 M% E  j( d0 r% }( P; }
3.2.2 Spectral Bounds for Trapezoidal Waveforms 122( o+ V1 B5 O+ Y: u( a
3.2.2.1 Effect of Rise/Falltime on Spectral Content 123
$ i3 Z5 V- r& ]/ }; `3 o2 D3.2.2.2 Bandwidth of Digital Waveforms 132
$ ~/ i5 V. C$ w+ d3 j  k2 E& @3.2.2.3 Effect of Repetition Rate and Duty Cycle 1361 G2 F7 ~! [4 s, {, M
3.2.2.4 Effect of Ringing (Undershoot/Overshoot) 137
8 {# ?/ g0 t# J* D# a: I/ D& u& @& ~3.2.3 Use of Spectral Bounds in Computing Bounds on the2 j1 S  a' K* S* ?# T0 \1 ~
Output Spectrum of a Linear System 140
) U6 L; Q, s% O0 M7 g* \: s3.3 Spectrum Analyzers 142. e0 M4 ]' w# H9 I4 ^
3.3.1 Basic Principles 1424 c7 A. ~0 D: Y3 ^( Y1 I2 a: `: M+ G
3.3.2 Peak versus Quasi-Peak versus Average 146
# y& Q8 V2 k% l0 H9 i4 R0 j
0 X0 C, U: a5 i2 U- ]3.4 Representation of Nonperiodic Waveforms 148, ?& M: E) I2 ~. W
3.4.1 The Fourier Transform 148& _5 P# [" q' B, H
3.4.2 Response of Linear Systems to Nonperiodic Inputs 1514 R- y4 a8 p$ o2 \3 ^8 H
3.5 Representation of Random (Data) Signals 151
1 M/ s+ m" q! N8 T, r3.6 Use of SPICE (Pspice) In Fourier Analysis 155" P; B8 c- s# ?) g/ r( B  L
Problems 167& O! e$ p; l1 A
References 175
1 B; Q1 C; R4 S( h& {4 @( ~& Z0 l4 Transmission Lines and Signal Integrity 177
6 j1 N3 o$ Z8 ^, K/ F; H4.1 The Transmission-Line Equations 1811 v5 _3 E1 O& }" v
4.2 The Per-Unit-Length Parameters 184
2 Q/ B3 H* T8 p8 a- O1 l- x4.2.1 Wire-Type Structures 186+ p& s4 ^) {) n3 Y0 P! j
viii CONTENTS
6 W3 w7 v, I4 R- I( c( ^, d* \4.2.2 Printed Circuit Board (PCB) Structures 199( b1 N  \, R1 @$ T$ {) m' u
4.3 The Time-Domain Solution 204
* C1 u! X3 }. O& f6 ?  [7 f3 `4 h" h5 v0 I! I4 ?( a
4.3.1 Graphical Solutions 204
9 s9 p7 S: z* [+ K$ D4 n0 U+ [/ [4.3.2 The SPICE Model 218
, ^6 I4 Q9 ^6 g; _8 o7 e/ t4.4 High-Speed Digital Interconnects and Signal Integrity 225
! ]5 k, l9 S/ [* U% v' I4.4.1 Effect of Terminations on the Line Waveforms 230
3 z% c9 r9 c8 w" ^; x5 ~4.4.1.1 Effect of Capacitive Terminations 233
6 a0 ]+ g" J' l: n4.4.1.2 Effect of Inductive Terminations 236
7 L- w# L& I- J" ?; b4.4.2 Matching Schemes for Signal Integrity 238
1 U9 n# D7 {' p) T: \) d. F! b4.4.3 When Does the Line Not Matter, i.e., When is Matching
1 r! a! n$ `3 }- i5 D% B7 ENot Required? 244
' @. Z& }- {8 Y) O! y4.4.4 Effects of Line Discontinuities 247
9 i; ?1 Q# g3 \1 N4.5 Sinusoidal Excitation of the Line and the Phasor Solution 260
4 V3 C& K. |. n6 M: {* b/ m4.5.1 Voltage and Current as Functions of Position 261
$ _* t) l7 _. ?( E, P4.5.2 Power Flow 269+ a* O: A  I; s0 Z* b: w
4.5.3 Inclusion of Losses 2702 S- t7 V5 l6 x8 p
4.5.4 Effect of Losses on Signal Integrity 273
+ f  s7 {& B' Y4.6 Lumped-Circuit Approximate Models 283/ W5 z2 \1 n* L5 H) Y
Problems 287+ V$ o$ `1 Y' _: c1 ]( y
References 297
" Y- t( v& D* I1 O; z8 ^1 j! e5 Nonideal Behavior of Components 299- b( H+ V3 V: N0 ]( {1 ^! k# v$ G
5.1 Wires 300
( L; s* q0 n6 [; w6 e% p0 {. \7 k5.1.1 Resistance and Internal Inductance of Wires 304
( I$ `' _4 u. w9 x5.1.2 External Inductance and Capacitance of Parallel Wires 3083 l6 E( Q( {8 [8 P9 ]/ Q
5.1.3 Lumped Equivalent Circuits of Parallel Wires 3093 [/ y! {7 U7 E0 a% S5 j
5.2 Printed Circuit Board (PCB) Lands 312
7 |, x! L; y  w9 h; w" ?5.3 Effect of Component Leads 3155 d2 }# }6 m) I* O. s: k, a4 R2 v
5.4 Resistors 317
. @" `) X+ Z6 k6 L+ P5.5 Capacitors 325: g# P0 n) f, M
5.6 Inductors 336
6 n; @2 i( j. ]# v  Y5.7 Ferromagnetic Materials—Saturation and Frequency Response 340
* E2 s7 U5 X) s5.8 Ferrite Beads 343; [" ]& u* r! f9 Z) S6 v
5.9 Common-Mode Chokes 3467 a, I6 b* p& E: m
5.10 Electromechanical Devices 3527 k7 ~) K8 I9 p( v9 z
5.10.1 DC Motors 352
* F) P( L# g# ]: F3 B1 X5.10.2 Stepper Motors 355
+ x# u- b$ J' P% P- ]5.10.3 AC Motors 3551 }/ r" ~% a1 i
5.10.4 Solenoids 356& J9 R: C1 w/ ?$ L( s* n& u
5.11 Digital Circuit Devices 357, l; ~) W% `6 X; l* Y$ V4 ~. ^, V
5.12 Effect of Component Variability 358
/ B- S% k6 O# a" G- |; e2 c5.13 Mechanical Switches 359
) E6 B+ g1 t9 J% a" }8 m4 }2 R5.13.1 Arcing at Switch Contacts 360
( H# J; X- w. n( @! U) O( V+ ^CONTENTS ix
' Z" k" m9 d6 X5.13.2 The Showering Arc 363
6 W- q- D! c4 g' m% V* b2 K) m- z5.13.3 Arc Suppression 364& K' ?4 }( c- Y! M8 E
Problems 369
. {7 f" l5 R% s: KReferences 375
* S2 j$ a1 M& h6 Conducted Emissions and Susceptibility 377
1 Z/ X( z, c2 E6 C: m4 p6.1 Measurement of Conducted Emissions 3785 Y- p  X4 a8 [7 a* J# }( v# ?
6.1.1 The Line Impedance Stabilization Network (LISN) 379
! z" ?( Z2 q. M* I% g7 {6.1.2 Common- and Differential-Mode Currents Again 381# M! ?- K2 k( C: T* L
6.2 Power Supply Filters 385
  N( Y0 g, {9 F& V) c) m6.2.1 Basic Properties of Filters 385
9 q0 ^8 h' A: M9 L6.2.2 A Generic Power Supply Filter Topology 3886 Y" L% R: Z2 ^* i
6.2.3 Effect of Filter Elements on Common- and) A, d; b& W2 V$ h) p
Differential-Mode Currents 390, Z! F' H0 d: \( ]) g$ M
6.2.4 Separation of Conducted Emissions into Commonand
5 s1 b2 b/ ?$ |! t+ B5 x1 lDifferential-Mode Components for
5 X3 p  w7 c. t+ y3 HDiagnostic Purposes 396
; o5 g( P6 k: I  S* U/ a1 t+ n3 m6.3 Power Supplies 401
1 q  J9 ~0 p2 E" \4 Q6.3.1 Linear Power Supplies 405! p/ ~" i# U* z
6.3.2 Switched-Mode Power Supplies (SMPS) 406" |" M+ N1 z* x/ u- H
6.3.3 Effect of Power Supply Components on Conducted
1 Z$ N  A0 H9 V; d: [0 q9 i$ MEmissions 409
0 d! C1 r6 o+ a6.4 Power Supply and Filter Placement 414& {8 U6 b" F0 b+ P
6.5 Conducted Susceptibility 4164 o! n9 H# v3 Z0 L" Q) G
Problems 416
9 z: y4 e6 y2 H& FReferences 4195 C2 N- e" Z7 Z/ I, y
7 Antennas 421
( J3 W' {" r; e5 F4 u, e7.1 Elemental Dipole Antennas 4216 I0 _! D9 ?! i4 U" f( i
7.1.1 The Electric (Hertzian) Dipole 422
& v2 s9 H* O. W1 x9 p7.1.2 The Magnetic Dipole (Loop) 4267 h! S  n0 D" s6 c4 W/ i
7.2 The Half-Wave Dipole and Quarter-Wave Monopole Antennas 429( m& I3 |8 P( L" W$ l! @
7.3 Antenna Arrays 4409 d4 X7 p0 m8 W
7.4 Characterization of Antennas 448
" Q) W+ i% f' n) O7.4.1 Directivity and Gain 448
$ i* P& o2 X- E6 X7.4.2 Effective Aperture 4546 V9 e" _5 v8 ~- O% K! d: a+ G
7.4.3 Antenna Factor 4564 y) J; l$ c1 R8 p. O  ^2 X; P$ ^
7.4.4 Effects of Balancing and Baluns 460
1 v; \1 E" r$ a3 t* h7.4.5 Impedance Matching and the Use of pads 463, r4 z/ B$ ?6 z; \
7.5 The Friis Transmission Equation 466+ H+ \; m7 A4 q4 H
7.6 Effects of Reflections 470  X" q* `7 r( O" o
7.6.1 The Method of Images 470
4 }5 K2 Z0 I1 ~. Q, W3 wx CONTENTS4 @- \* V- Y% l' V5 T
7.6.2 Normal Incidence of Uniform Plane Waves on Plane,, T1 y& A$ c3 \4 X; T1 e: t
Material Boundaries 470
8 E' |  W' m' }" N# M7 k+ M+ c" I7.6.3 Multipath Effects 4798 f- l' |. O" ]  n) v
7.7 Broadband Measurment Antennas 486( h! }9 T4 T" s3 S
7.7.1 The Biconical Antenna 487( f; o9 U* R. i$ S) g
7.7.2 The Log-Periodic Antenna 490
! R! }8 Q0 r& k9 k1 ?* F) OProblems 494' Y0 \$ P0 }! a/ b
References 501
6 g2 r: ?" U. F5 X6 r8 Radiated Emissions and Susceptibility 503
7 w3 [% \7 u7 Q/ K0 T; l6 n: _. T9 F8.1 Simple Emission Models for Wires and PCB Lands 504+ l0 @0 R( n  I' X! V- x6 O3 _
8.1.1 Differential-Mode versus Common-Mode Currents 504
, }( [+ F5 z+ s/ [1 I8.1.2 Differential-Mode Current Emission Model 5096 t3 a& P6 V" t: c
8.1.3 Common-Mode Current Emission Model 5143 ~* z% k. D! u7 y; d
8.1.4 Current Probes 518
, v5 V  q# Z9 H/ R) g# G8.1.5 Experimental Results 523
% g; r( ~( Z4 w8.2 Simple Susceptibility Models for Wires and PCB Lands 533
  t. A% }6 O* Y! c5 G; V; d5 m6 C8.2.1 Experimental Results 544" ~1 Q! ^/ s8 b# h* Z
8.2.2 Shielded Cables and SuRFace Transfer Impedance 5465 X" s) s6 i6 X9 N1 o0 x7 `
Problems 550+ k& I" i! s  _
References 556
" W0 k% q; Y0 a; u+ `( Z9 Crosstalk 559
) V! O" A  ^7 m- u9.1 Three-Conductor Transmission Lines and Crosstalk 560  q5 N$ ]; F* }' ~, ~+ p
9.2 The Transmission-Line Equations for Lossless Lines 5644 c/ C& N' j) M& V2 `+ c. Z
9.3 The Per-Unit-Length Parameters 567
( b: \8 n8 X! d9.3.1 Homogeneous versus Inhomogeneous Media 568) d: T5 ]4 Z$ w" T8 c! a
9.3.2 Wide-Separation Approximations for Wires 570
* W: `' D' k& h6 B5 C% ?9.3.3 Numerical Methods for Other Structures 5801 p% C4 {9 K; T7 d1 q, ^; h$ o7 c
9.3.3.1 Wires with Dielectric Insulations
) g* k( D0 j; |" [(Ribbon Cables) 586
/ P! L/ v5 K' B/ X9.3.3.2 Rectangular Cross-Section Conductors* k9 a$ H8 G/ _
(PCB Lands) 590! }$ B7 m: P9 F5 l5 s. \
9.4 The Inductive–Capacitive Coupling Approximate Model 595+ _0 Q6 a8 `% {! d. `
9.4.1 Frequency-Domain Inductive-Capacitive Coupling
. P0 q: j3 W, tModel 599
/ u  n! A7 R1 ?. G# f1 ~5 Y+ M9.4.1.1 Inclusion of Losses: Common-Impedance
! x* m) l- O/ T2 H2 R5 i+ KCoupling 6010 t$ v+ k7 [- g) o( n6 S" {) g) O
9.4.1.2 Experimental Results 604
4 P$ C' Q8 T" z( J) w& o  S: a/ I9.4.2 Time-Domain Inductive–Capacitive Coupling Model 612$ v2 z/ Q) e. W3 w5 r
9.4.2.1 Inclusion of Losses: Common-Impedance Coupling 616& w) ^+ k2 v$ p/ I
9.4.2.2 Experimental Results 6177 K4 |3 [  i* `+ q
CONTENTS xi
2 G1 b) N! v7 |9.5 Lumped-Circuit Approximate Models 624+ w; a+ ^3 X7 A7 t' ]
9.6 An Exact SPICE (PSPICE) Model for Lossless, Coupled Lines 624! q" ], A% K3 Y; g8 M+ I" s
9.6.1 Computed versus Experimental Results for Wires 633
0 _2 t/ u3 l: M# H6 o9.6.2 Computed versus Experimental Results for PCBs 640
+ [7 x  I) c; a1 l8 O; }9.7 Shielded Wires 647
: _8 E+ x7 {* Y1 M# F' c9.7.1 Per-Unit-Length Parameters 648) c  C$ \; O. S; ?$ M( }3 |3 o
9.7.2 Inductive and Capacitive Coupling 651  w+ B! \; \" B/ f5 |) @
9.7.3 Effect of Shield Grounding 658  j* y0 `! i, c/ b
9.7.4 Effect of Pigtails 667+ T5 L6 T# a; X9 Z3 H, C) N
9.7.5 Effects of Multiple Shields 669
: F) G' p4 ~8 g+ V/ J/ V0 [- F9.7.6 MTL Model Predictions 675
. J; j2 e4 f# I7 \! y* K4 s1 \% ^9.8 Twisted Wires 6771 i, y: j. H) X( u5 R( ~/ l* N2 ?
9.8.1 Per-Unit-Length Parameters 681- ~  K$ m8 T" [) v6 C
9.8.2 Inductive and Capacitive Coupling 685
) j- }9 C9 r4 O9 d: B9.8.3 Effects of Twist 6894 x1 D7 Y, c; K) U
9.8.4 Effects of Balancing 698* _: ?! ?' o! W: i
Problems 701$ ~* O: _, v  \/ }1 B
References 710
- E. q) R+ R8 v5 F* k10 Shielding 713
, A  e: A4 p" z, n4 O7 w# }10.1 Shielding Effectiveness 718
, [' J! e5 R9 j3 ~10.2 Shielding Effectiveness: Far-Field Sources 721
  D2 m* U2 j- d  [10.2.1 Exact Solution 721
) c7 b/ z6 H( w/ k* J0 r10.2.2 Approximate Solution 725
  {! N5 k" \& ?) E; i8 u% P10.2.2.1 Reflection Loss 7257 d# D7 r6 r4 O# u  h  Z
10.2.2.2 Absorption Loss 728
$ H6 D6 y# |0 H- q8 S% O2 ]10.2.2.3 Multiple-Reflection Loss 729  u5 m3 o4 e9 X
10.2.2.4 Total Loss 731- p: j0 a0 x$ P- O# p
10.3 Shielding Effectiveness: Near-Field Sources 7353 p; r1 Y+ g. D, C) \
10.3.1 Near Field versus Far Field 736
$ J" h! s" x" A( A10.3.2 Electric Sources 740
9 s1 U; ~3 x! X, m! W3 G! E$ Q+ |10.3.3 Magnetic Sources 740
4 j( B" C7 O9 s10.4 Low-Frequency, Magnetic Field Shielding 742
: w' I0 q$ |- d3 @0 s' n( s% o$ k10.5 Effect of Apertures 745" A5 }; d* O, M$ \# b7 h
Problems 750
$ K8 [! E4 h( HReferences 751
  n2 N, g% a8 M# m! H# f11 System Design for EMC 753" e6 d  G% ~: X
11.1 Changing the Way We Think about Electrical Phenomena 758
; {6 Y& j4 G4 m. J3 \. {11.1.1 Nonideal Behavior of Components and the# \4 a1 Y8 ~( h9 b- U9 a
Hidden Schematic 758
8 O! j& G' @  Z" G6 p11.1.2 “Electrons Do Not Read Schematics” 763
" x: @$ R6 ~* [xii CONTENTS
; y9 O  L( P9 o6 r/ V11.1.3 What Do We Mean by the Term “Shielding”? 766. I  ^8 P& p3 h* K& S+ q/ Q
11.2 What Do We Mean by the Term “Ground”? 7686 C- v$ S8 B' \
11.2.1 Safety Ground 771" D6 I% M. T, F7 x) \1 c/ L" o: \+ L
11.2.2 Signal Ground 774
8 w% [. |, Q; X3 E3 |! ~$ U11.2.3 Ground Bounce and Partial Inductance 7758 {9 H+ {; s" J8 w+ N9 s& n3 F, p
11.2.3.1 Partial Inductance of Wires 781' {+ I/ o! ], t5 m  K
11.2.3.2 Partial Inductance of PCB Lands 786
1 V4 D4 M$ w$ U4 e8 R9 v; A% g11.2.4 Currents Return to Their Source on the Paths of Lowest$ X4 L  r% P- s# J+ S
Impedance 787: B4 E" b6 g: P2 d
11.2.5 Utilizing Mutual Inductance and Image Planes to Force
4 _2 c8 ?% j" _9 D+ S4 QCurrents to Return on a Desired Path 793' O9 E$ _2 K& a9 |
11.2.6 Single-Point Grounding, Multipoint Grounding, and( O3 u& X( V0 A5 `
Hybrid Grounding 796* w6 j* E- G9 f; V8 X4 O' v, a
11.2.7 Ground Loops and Subsystem Decoupling 802! t1 ~9 X- R8 D/ B3 }2 P. g
11.3 Printed Circuit Board (PCB) Design 805/ ^. d6 Z. U, h
11.3.1 Component Selection 805
; a% b# i" x& ]5 p11.3.2 Component Speed and Placement 806( C1 `# q1 [0 x0 l6 l/ S/ }
11.3.3 Cable I/O Placement and Filtering 808) a0 A: J, ]* d$ N+ y( h
11.3.4 The Important Ground Grid 810" q, [* }) v! f& I4 O
11.3.5 Power Distribution and Decoupling Capacitors 812
" }- \7 u. c+ D$ f+ O11.3.6 Reduction of Loop Areas 822
2 n. R# Z$ n5 b' H4 d; ]11.3.7 Mixed-Signal PCB Partitioning 823
" M6 k5 ]$ v% m& P11.4 System Configuration and Design 827
, s2 C* O- V. v& Y! q& o6 ?7 s/ k11.4.1 System Enclosures 827  l, E! J4 W' N  I# s( @' g
11.4.2 Power Line Filter Placement 828
* _6 M" a, A4 P' R% O5 Z2 p11.4.3 Interconnection and Number of Printed
% q8 t2 p) j6 M( [. U( J; i5 XCircuit Boards 8295 ~( n1 _5 y0 w0 I/ X& m
11.4.4 Internal Cable Routing and Connector Placement 831
/ J# b, `! v- I4 A" E$ k11.4.5 PCB and Subsystem Placement 8327 r' j$ O  ~# l0 U' r" ]
11.4.6 PCB and Subsystem Decoupling 8328 m6 }( g( T' [- ?/ }6 f' m
11.4.7 Motor Noise Suppression 832; Z2 ?; n  i$ n/ J# x
11.4.8 Electrostatic Discharge (ESD) 834: F1 _8 ~$ g# ]( I5 T
11.5 Diagnostic Tools 847
0 D) d1 v! Q$ m, E) B( ]( R11.5.1 The concept of Dominant Effect in the Diagnosis of+ B/ y+ J$ G4 z
EMC Problems 850: P: H1 a" @' {$ r- B
Problem 856
7 \3 j, N! u5 V4 L8 ~# Z3 o! NReferences 857
9 B: b2 T0 _. @! R; u$ Z$ r, VAppendix A The Phasor Solution Method 859$ z" m% f1 V; a( P0 U- v
A.1 Solving Differential Equations for Their Sinusoidal,
6 ?2 {# a7 F- o$ zSteady-State Solution 859* k: Z: Z2 \& S) k
CONTENTS xiii
& c9 b7 d& P) K. J$ ?% l3 ]* ?1 TA.2 Solving Electric Circuits for Their Sinusoidal,1 P8 [& I. R% i. D6 X7 F" {. ^* u
Steady-State Response 863
+ J1 q$ p1 H+ aProblems 867& P! I; M. C8 j, k& ?+ s
References 869! ~& y: a+ |! ~3 }
Appendix B The Electromagnetic Field Equations and Waves 8713 U+ J$ J9 Q7 k* [
B.1 Vector Analysis 872
3 B4 o4 r* d& O/ y+ o& X3 E+ \/ zB.2 Maxwell’s Equations 881/ R6 W* w1 i" l. O
B.2.1 Faraday’s Law 881' Y" p9 P. r/ ?# ~" h. H
B.2.2 Ampere’s Law 8920 e  V: l: K. j+ @6 P4 J* [" a+ D
B.2.3 Gauss’ Laws 8984 {! J* d, J5 }0 k. X
B.2.4 Conservation of Charge 900
0 G/ B- s+ F" S7 m+ uB.2.5 Constitutive Parameters of the Medium 900
, [+ j- x- r! FB.3 Boundary Conditions 902
( [; S' q4 A% G/ t! M! J: t) F9 hB.4 Sinusoidal Steady State 9070 ~, I  \4 [. ^- [, _# Z
B.5 Power Flow 909; a! i1 Z( v* F1 F9 |
B.6 Uniform Plane Waves 909
/ n: `0 }+ M5 yB.6.1 Lossless Media 912
8 j  N! l; e7 B3 L$ s$ e3 YB.6.2 Lossy Media 918) t6 {# j6 |, O: J
B.6.3 Power Flow 922
9 G1 [# Y* Q4 }& f/ Y; g# }B.6.4 Conductors versus Dielectrics 923
% R6 w, ?2 J. Y. K: \4 g: b2 l7 PB.6.5 Skin Depth 925
1 |- |; F$ d( F: ~. w# v' n( DB.7 Static (DC) Electromagnetic Field Relations—( e0 W. S6 h- V9 K/ v7 k( v; Z
a Special Case 927
2 n% j: J! c! a/ J0 \  oB.7.1 Maxwell’s Equations for Static (DC) Fields 927; R9 d$ y* E2 h) K  c# _  B
B.7.1.1 Range of Applicability for& b5 f. F+ t/ ?2 ~) N- X" o; P
Low-Frequency Fields 928; b/ m. X" h! S: |4 F
B.7.2 Two-Dimensional Fields and Laplace’s
( l: W3 z' y  H: `# f' h, FEquation 928
( g8 F% c" U% v: Z6 a+ KProblems 9305 J4 t0 k8 Q7 p9 X: ~2 a
References 939! }2 K$ U# e+ b, p* a9 b
Appendix C Computer Codes for Calculating the Per-Unit-Length
% _$ y* l/ D# n(PUL) Parameters and Crosstalk of Multiconductor. _* H9 J- M* y- E
Transmission Lines 941
; I2 b0 p4 W- l) k& T8 YC.1 WIDESEP.FOR for Computing the PUL4 [0 S  A' ?" e! I. |
Parameter Matrices of Widely Spaced Wires 942
' G, @9 I, j# H  o1 D. VC.2 RIBBON.FOR for Computing the PUL Parameter
' V9 Y8 B) o' @1 ]" O& e3 wMatrices of Ribbon Cables 947
& y0 {! S  a9 q9 d  g+ ]5 PC.3 PCB.FOR for Computing the PUL Parameter
0 o  c+ m. V5 I  B% VMatrices of Printed Circuit Boards 949) T, y, T2 {% p# x2 V  ~; }
xiv CONTENTS1 r$ V, X- H: e  B1 i9 n
C.4 MSTRP.FOR for Computing the PUL Parameter
/ ]# U* M  N6 X1 B6 A3 K5 s4 s! r) VMatrices of Coupled Microstrip Lines 951
# E. B1 |3 Z4 Z, M4 k" S, oC.5 STRPLINE.FOR for Computing the PUL
0 U5 T7 `4 O! |Parameter Matrices of Coupled Striplines 952
) U( d! [. O! r! G/ q) e8 hC.6 SPICEMTL.FOR for Computing a SPICE* e+ c1 d) _# v! a& r
(PSPICE) Subcircuit Model of a Lossless,
* h2 x2 d3 l& u( |, mMulticonductor Transmission Line 954
, ^4 ^& h+ n4 L, j: N: B& kC.7 SPICELPI.FOR For Computing a SPICE (PSPICE)9 g7 h) a( K. G9 i
Subcircuit of a Lumped-Pi Model of a Lossless,
0 _8 K# g$ _7 ZMulticonductor Transmission Line 956
+ V* j: u% k+ c+ ~! G1 M# J! LAppendix D A SPICE (PSPICE) Tutorial 959
/ e  y4 V9 S2 \D.1 Creating the SPICE or PSPICE Program 960
6 S5 c( l. o. t& O2 m. gD.2 Circuit Description 961
! Q, g) w. d: }3 WD.3 Execution Statements 966  C( F: ^; T- y
D.4 Output Statements 968
, L3 _6 T3 ^, [4 zD.5 Examples 9706 b9 K3 P( ^3 t' y
References 974, g1 U+ Q. k+ k0 I
Index 975, k' K% w5 Q+ p) ], b0 v

8 M" L% X5 {4 O! O7 \  m

Wiley.Interscience.Introduction.to.Electromagnetic.Compatibility.Jan.2006-Clayto.rar

7.65 MB, 阅读权限: 40, 下载次数: 1, 下载积分: 威望 -5

该用户从未签到

2#
 楼主| 发表于 2018-12-26 15:55 | 只看该作者
3.Handbook of Electromagnetic Compatibility4 W- C. |( U5 L1 U) l
电磁兼容性手册8 L) t* Q. E8 }7 R8 Q
1995年出版7 B) y- H" ?! Z, ^
作者Reinaldo Perez8 f& k3 H. w5 X5 c: s
【无目录】

Handbook of Electromagnetic Compatibility, 1995.part1.rar

10.8 MB, 下载次数: 1, 下载积分: 威望 -5

Handbook of Electromagnetic Compatibility, 1995.part2.rar

10.77 MB, 下载次数: 1, 下载积分: 威望 -5

该用户从未签到

3#
 楼主| 发表于 2018-12-26 16:10 | 只看该作者
4.EMC for Product Designers& X+ u; A) T( ?
Tim Williams
1 b+ J) R# }1 j9 {( d0 P( G3 h' z, w7 F+ ~% D
5 u2 s- ^/ s2 l, K. K9 F& ?' L. s

content.png (42.19 KB, 下载次数: 4)

content.png

EMC for Product Designers.rar

8.65 MB, 下载次数: 2, 下载积分: 威望 -5

您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-11-26 21:47 , Processed in 0.171875 second(s), 26 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表