均匀介质中的平行双线耦合器。碎片三分钟,收获一丢丢。
先做个理想的梦,再体验现实的不堪。
先说说均匀介质中的平行双线耦合器,再看看非均匀介质中的平行双线耦合器。
. |& D; Q/ g& d3 v; ]! \* ^* O- X
奇偶模分析方法简介
常用奇偶模来分析各种无源微带器件,包含平行双线耦合器。奇模激励(左)和偶模激励(右)如下图所示:
* F2 Z @3 C0 h, u9 t
奇模激励和偶模激励的横截面电磁场分别如下图所示:
$ @9 l* {# B: U5 V( Z P# h
* @$ `' i& x' A7 b2 @, S, ^% \ , M. l6 S, G6 a3 D! b0 P% S
上面两幅图,在《003_差模阻抗共模阻抗奇模阻抗偶模阻抗都是些什么鬼?》中出现过。
可以看出平行双线中间存在无形的对称镜面:
$ N& D5 } o! Y! G
奇模激励的对称镜面是E面,相当于接地;
偶模激励的对称镜面是H面,相当于磁短路;
仍然按照003文章中的差分线端口编号如上图所示。
+ R8 k7 i |6 q! g. Y1 j
均匀介质中的平行双线耦合器公式
具体的推导过程较复杂,相关的资料很容易找到,限于三分钟篇幅,本文只给出推导结果。
假设特征阻抗为Z0,奇模阻抗Z0e,偶模阻抗Z0o; 假设奇偶模反射系数分别为Гo、Гe;
假设奇偶模传输系数分别为To、Te;
均匀介质中的平行双带状线耦合器公式如下所示:
将各反射系数和传输系数代入,得到:
基于对称性、互易性,很容易得到4X4的完整S参数。
本文只说明这4个S参数就足够了。
上面4个公式中只出现了一种电长度θ,也就是说奇模电长度θo等于偶模电长度θe,或者说奇模相速Vo等于偶模相速Ve。
因为相速V = f * λ 中的频率是一样的。一个λ相当于2π个弧度。
, j5 E7 k8 S, h! R
理想的梦境
这说是前面所说的“理想的梦”,这个梦境中有些有意思的场景:
1、假设由均匀介质的平行双线构成理想的耦合器,理想耦合器符合端口全匹配,也就是S11=0,则可以推导出:
理想耦合器符合隔离端口无信号,也就是S14=0,也能推导出:
均匀介质中的平行双线耦合器,设置好线宽和耦合间距以符合上式,那么天然地同时做到端口全匹配(S11=0)和理想隔离度(S14)的要求。
2、如果耦合度为k0,则有:
3、当耦合器电长度θ = π/2,也就是常说的λ/4的情况下,耦合器公式就简化成:
这么看来,设计均匀介质中的耦合器,就套用上面的几个简单公式,确实太简单了。
看看美国安伦Anaren出品的耦合器(图片来自于网络):
9 h: i2 X3 O1 ^/ D
再看看深圳研通Yantel出品的耦合器(图片来自于网络):
# j* y& _! E: t: [
$ r4 _6 }* R# u$ t f* Z, E8 i- z
这两个厂家出品的耦合器,上下都存在地平面,奇模电磁场和偶模电磁场分布区域的相对介电常数几乎相等,如下图所示:
! ?5 \1 l8 }- S5 |
所以奇模相速等于偶模相速,均匀介质中的耦合器,指标都不错。
6 o5 Z) k2 I3 A% g
不堪的现实
美国安伦Anaren,深圳研通Yantel两个厂家出品的贴片耦合器,指标是好,但缺点是贵。
所以出于降成本,现实中的耦合器有些是直接集成在PCB上的(图片来自于网络):
( H- _+ p6 h* d2 ^4 z
$ ^6 T. ?/ {* h4 e4 M) T# m这不是贴片元件,而是在双面PCB上,用铜箔蚀刻成形状各异的图形构成的耦合器。
优点是:成本为零。
这种微带线耦合器,其奇模电磁场和偶模电磁场主要分布区域如下:
! @% O, k6 W: v
7 D. w6 ]% L# i; T* j9 I4 Y2 T
所以:奇模电长度不等于偶模电长度,θe≠θo,奇模相速不等于偶模相速,Ve≠Vo。
所以不能同时做到S11=0和S14=0。
也就是说非均匀介质中的平行双线耦合器,在端口匹配的情况下,隔离度指标较差,定向性指标也较差。
需要采取什么样的措施,才能改善微带耦合器的方向性?
请关注后续几篇原创文章,或关注电巢相关课程《微带线窄边耦合器》。
: I' A- p. o1 R+ O/ o
总结均匀介质中的平行双线耦合器,由于奇模电长度等于偶模电长度,θe=θo,奇模相速等于偶模相速,Ve=Vo,能同时做好端口匹配和隔离度指标。
" L2 w: r+ H6 d6 m0 I3 q! ^( F, P7 f
出品|EDA365
作者|何平华老师
+ Q" k+ H: z2 g
注:本文为EDA365电子论坛原创文章,未经允许,不得转载
, d/ T! k* @0 p3 f# q
. _* v% o4 J6 x; g6 T* {* ~8 R$ U7 Z