|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
Basic concepts in RF Design
7 c3 ?- N2 @1 d2 AOverview
2 d; U( G" A" E5 I. C6 G6 ASystem Theory
, _' c7 F0 L$ S1 {5 _Effects of Nonlinearities- a/ X1 V0 }! {
Gain Compression
5 o. F- P C: W2 V" b# xDesensitization and Blocking
+ \8 K' Y: A1 k" @1 W& x. MCroSSModulation) R) r$ k: g5 L$ W2 u
Intermodulation
9 d, g N; b' w* h1 z, { c" mAdjacent Channel Power Rejection; O% c+ Y( E( ~4 a( j$ v
Random Signals
" M- i1 x! \4 E+ \ f" ]6 _Noise and Noise Figure" I! T0 T; w5 w4 q6 x) ]% N3 C
Input Referred Noise
3 t8 i" G+ ], V0 oNoise Figure of Lossy
/ n' U% J) n0 j; r' w& A" _$ i
1 H. ?7 h5 s$ ^( u! a2 M% N- y
% t3 x2 h y- |System Theory (1)* g1 P: x9 b5 X* d7 h
Linear Systems& G# i, x3 ]$ b- {
1 1 x ® y 2 2 x ® y( l' c# D+ u# @* n
1 2 1 2 ax + bx ®ay + by# B" v: U# U4 O; `1 G m( s
If inputs x1 and x2 generate outputs y1, y2
$ S5 Q) C9 h8 A* D6 J0 P$ _! w# ZFor a linear system output can be expressed as a linear combination of inputs
0 b: E' o- l3 J& {- ifor all values of the constants a and b
4 u, V! r5 X. [( U0 y8 dTime Invariant Systems
% @( {0 @' k% LFor a time invariant system time shift in input results in the same time shift in output
* [% {$ t& N) T8 g* \9 T( W: ex(t )® y(t ) then x(t -t )® y(t -t )
+ U' o4 Z/ [ R H! dAny system that does not satisfy this condition is nonlinear
* I* s6 x8 J. b IObs. A system is nonlinear if it has nonzero initial conditions; J* Q1 |7 w. o+ X. W
for all values of t
e* b. q4 j0 h# q3 a& |' n
% G# y1 m( F" o' O2 r/ L
* x; E2 v5 M& Y; e: }4 r
1 A0 B x6 M, v+ [, T$ W7 K2 s' Z |
|