TA的每日心情 | 开心 2020-9-8 15:12 |
|---|
签到天数: 2 天 [LV.1]初来乍到
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
硅片级可靠性(WLR)测试最早是为了实现内建(BIR)可靠性而提出的一种测试手段。硅片级可靠性测试的最本质的特征就是它的快速,因此,近年来它被越来越多得用于工艺开发阶段。工艺工程师在调节了工艺后,可以马上利用WLR测试的反馈结果,实时地了解工艺调节后对可靠性的影响。这样就把可靠性测试糅合和工艺开发的整个过程当中。如今,工艺更新换代非常快,所以,WLR就成为了一种非常有效的快速方法使工艺开发的进程大大加快。同时,各个公司在工艺开发后都会发行一个针对WLR的技术报告,这也为业界广泛接受。JEDEC也为此专门制定了一个标准,而且不定时的更新其内容。7 f! W8 o' ?2 S* s% Z+ m
3 Z9 [9 d3 M1 r" y2 e8 m6 u6 k
" Z B, y6 [+ P& g) R, h: P, [ WLR要测试的项目主要有以下几大类:①互连线可靠性(电迁移);②氧化膜可靠性;③热载流子及NBTI;④等离子损伤(天线效应)等。用于工艺开发的WLR流程主要如下。
" {# Z( x. |6 P- @' _6 g
! f- h, r: s9 g& A0 G2 s: U 首先,制定一个WLR计划,包括对测试样品的要求(样品数、测试面积、Lot数等),一些设计规则和所有达到的规范。比如说电迁移中,要给出最大设计电流,器件使用温度等,评价氧化膜的可靠性时,如果是用斜坡电压法则要求测试面积大于10cm2,缺陷密度不能大于一定的值(D0);如果是用恒定电压法,则要给出加在栅极上的电压分别有多大等等。在评价热载流子效应时,一般要求热载流子中直流寿命大于0.2年等。下面详细介绍一下各个项目。
" e4 Y/ Q, U* U6 |, a7 J% `2 B& M
互连线可靠性(电迁移)3 G. A. e8 q1 }; B
! i5 Z5 H+ g0 h: _. k$ M# _ 电迁移(EM)是微电子器件中主要的失效机理之一,电迁移造成金属化的开路和短路,使器件漏电流增加。在器件向亚微米、深亚微米发展后,金属化的宽度不断减小,电流密度不断增加,更易于因电迁移而失效。因此,随着工艺的进步,EM的评价备受重视。
/ }" l1 b( \' T( L
( S0 V( l F( x, L3 ]6 J 导致电迁移的直接原因是金属原子的移动。当互连引线中通过大电流时,静电场力驱动电子由阴极向阳极运动,高速运动的电子与金属原子发生能量交换,原子受到猛烈的电子冲击力,这就是所谓的电子风力。但是,事实上金属原子同时还受到反方向的静电场力。当互连线中的电流密度较高时,向阳极运动的大量电子碰撞原子,使得金属原子受到的电子风力大于静电场力。因此,金属原子受到电子风力的驱动,使其从阴极向阳极定向扩散,从而发生电迁移。
% V0 d& g* h1 n: w: b7 }, r3 F+ k, x$ h
传统的评价电迁移的方法是封装法。对样品进行封装后,置于高温炉中,并在样品中通过一定电流,监控样品电阻的变化。当样品的电阻变化到一定比例后,就认为其发生电迁移而失效,这期间经过的时间就为在该加速条件下的电迁移寿命。但是封装法的缺点是显而易见的,首先封装就要花费很长的时间,同时,用这种方法时通过金属线的电流非常小,测试非常花费时间,一般要好几周。因为在用封装法时,炉子的温度被默认为就是金属线温度,如果有很大的电流通过金属线会使其产生很大的焦耳热,使金属线自身的温度高于炉子的温度,而不能确定金属线温度。
+ O4 w) C! q, M; Q% t' N7 z! h/ e# y
所以,后来发展了自加热法(ISO-thermal)。该方法不用封装,可以真正在硅片级测试。它是利用了金属线自身的焦耳热使其升高。然后用电阻温度系数(temperature coefficient of resistance,TCR)确定金属线的温度。在实际操作中,可以调节通过金属线的电流来调节它的温度。实际应用表明,这种方法对于金属线的电迁移评价非常有效,但是对于通孔的电迁移评价,该方法就不适用了。因为,过大的电流会导致通孔和金属线界面出的温度特别高,从而还将无法确定整个通孔电迁移测试结构的温度。针对这种情况,又有研究者提出了一种新的测试结构——多晶硅加热法。这种方法是利用多晶硅作为电阻,通过一定电流后产生热量,利用该热量对电迁移测试结构进行加热。此时,多晶硅就相当于一个炉子。该方法需要注意的是在版图设计上的要求比较高,比如多晶硅的宽度,多晶硅上通孔的数目等都是会影响其加热性能的。
1 T" r9 u! Z/ H2 f* A6 Z
7 ^+ J. f+ P: [ 以上三种方法得到的都是加速测试条件下的电迁移寿命,我们需要的是在使用条件和设计规则电流下的电迁移寿命,利用Black方程来推得我们想要的电迁移寿命。 氧化膜可靠性. B V, k2 v4 f8 N% K& q
3 `0 C1 m% ?' S9 B4 s% N1 s
集成电路以高速化和高性能化为目标,实现着进一步的微细结构。随着微细结构在工业上的实现, 降低成本和提高集成度成为可能。另一方面,随着MOS 集成电路的微细化,栅氧化层向薄栅方向发展,而电源电压却不宜降低,栅氧化层工作在较高的电场强度下,从而使栅氧化层的抗电性能成为一个突出的问题。栅极氧化膜抗电性能不好将引起MOS器件电参数不稳定,进一步可引起栅氧的击穿。栅氧击穿作为MOS 电路的主要失效模式已成为目前国际上关注的热点。
- N% A& T( k' a3 ?3 ^: b" i/ H# y. B$ P2 f3 Z2 ~1 i
评价氧化膜可靠性的结构一般都是MOS电容,评价氧化膜不同位置的特性,需要设计不同的结构,主要有三种结构:大面积MOS电容,多晶硅梳状电容,有源区梳状电容等。评价氧化膜的方法主要有斜坡电压法,恒定电压法以及恒定电流法(用的相对较少)。
% r+ u! d9 `+ q S) o- y! S+ r7 V$ @6 S
斜坡电压法) D; ]- |+ `6 B$ |' U8 I9 h
N. d) ^* H2 {
测试时使MOS电容处于积累状态,在栅极上的电压从使用电压开始扫描一直到氧化膜击穿为止,击穿点的电压即为击穿电压(Vbd),同时我们还可以得到击穿电量(Qbd)。按照JEDEC标准,用斜坡电压法时,总的测试结构的氧化膜面积要达到一定的要求(比如大于10cm2等)。做完所有样品的测试后,对得到的击穿电压进行分类:
5 H& {. O2 w* b6 D5 F8 d
) M! h3 u+ ?* q; X C0 Q ● 击穿电压《使用电压:早期失效;
6 J1 B/ |9 h d- f7 A
1 k* C5 g% Z/ A, n" N9 _ ● 使用电压《击穿电压) ?7 R, D; m# Q q
% N) X# J' G& p& O
● 击穿电压》m&TImes;使用电压:本征失效
* J1 u) X7 b$ D, |: H6 u( x6 S! {0 O
然后计算缺陷密度D:2 X# I- Y# p) i& A9 w
4 ^: I! p& o2 P7 H. ~" ` j D=(早期失效数+可靠性失效数)/总的测试面积;( ^7 k' _2 Z: h1 X. i
2 m- N9 n* i, h5 x& O# J6 [ [ 如果D《 D0,则通过;6 n2 ~/ y1 T+ ?
5 c. v. @ m* y; H
如果D》D0,则没有通过。
# z5 } i2 r3 S$ Z
4 ^: q* D" b. l+ c, K9 W+ S 此外,得到的击穿电量也可以作为判定失效类型的标准,一般当Qbd《0.1C/cm2 就认为是一个失效点,但是当工艺在0.18μm以上,Qbd一般只是作为一个参考,并不作为判定标准,因为Qbd和很多测试因素有关。
. S1 b- A- Q1 O Y6 n6 f4 x
( C! l# N0 x' V7 [1 X% p |
|