TA的每日心情 | 怒 2019-11-20 15:22 |
|---|
签到天数: 2 天 [LV.1]初来乍到
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
( [' {; u7 F* a# q8 v7 ?(1)序列前向选择( SFS , Sequential Forward Selection )
! A1 D! f: ~7 m7 @, i3 Y1 v( m Y6 O9 ?+ y- ?
算法描述:特征子集X从空集开始,每次选择一个特征x加入特征子集X,使得特征函数J( X)最优。简单说就是,每次都选择一个使得评价函数的取值达到最优的特征加入,其实就是一种简单的贪心算法。
4 l- D) q$ _: r1 Z, \% m! ~1 \
( t4 E" n+ T4 h* w. w
Z$ J0 ]% w5 j4 I( X+ w% F+ F
/ `7 K8 k8 R( O* ]. v2 B
b/ A8 Z) r! X1 p- ^
+ b( s* K3 S" | ?2 Z3 {& T+ S算法评价:缺点是只能加入特征而不能去除特征。例如:特征A完全依赖于特征B与C,可以认为如果加入了特征B与C则A就是多余的。假设序列前向选择算法首先将A加入特征集,然后又将B与C加入,那么特征子集中就包含了多余的特征A。/ _$ G1 |" a8 _
7 ~6 y- c# `+ Z9 j
代码:
& s2 g9 r8 G) _2 r" e* u- ]
8 N0 L8 }5 X" o! O' R! q. D- %----4.17编 顺序前进法特征选择 成功!
- ' Y) m; n# V d1 F
- clear;
- clc;
- %--------特征导入 请自行修改
: C0 `6 E+ f( \; H" w3 _7 u7 x- M=512;N=512;
- load coouRFeature16_0521_Aerial1 %%%共生矩阵 96.14%
- wfeature{1}=coourfeature(:,1);
- wfeature{2}=coourfeature(:,2);
- wfeature{3}=coourfeature(:,3);
- load fufeature_0521_SARAerial1_512%%复小波 98.26%
- for i=1:13
- wfeature{3+i}=wavefeature(:,i);
- end
- load wavefeature_0521_SARAerial1_512%%%非下采样小波 97.58%
- for i=1:7
- wfeature{16+i}=wavefeature(:,i);
- end
- load wavefeature_0521_Aerial1%%小波 97.65%
- for i=1:7
- wfeature{23+i}=wavefeature(:,i);
- end
- % load rwt_cofeature96_0423_lsy1
- ; f# l2 D' g' E% g2 b& D
- % for i=1:96
+ A+ a4 |4 U q* a! P- % wfeature{30+i}=feature(:,i);
- 8 p. v) b9 X# Q9 l" h$ y: ~; D8 y
- % end
& F: s! Q1 j/ O8 I# y$ C6 P- %%%%%%%----------归一化
% |1 f }8 ? n+ R. N; R- [m n]=size(wfeature{1});
- for j=1:30%一共30组特征 这里 请自行修改
- mx=max(wfeature{j});
- mi=min(wfeature{j});
- mxx=(mx-mi);
- mii=ones([m n])*mi;
- wfeature{j}=(wfeature{j}-mii)./mxx;
- end
- %%---------------SFS 先选4个特征尝试
- & p4 f7 W) k1 t; T6 M* T1 M
- chosen=[];%%表示已选的特征
- chosen=[chosen 1];
- Jc=0;%%选出的J值
- for j=1:5 %选5个特征
- J=zeros([1 30]);
- for i=2:30 %一共30组特征 这里 请自行修改
- [mm nn]=size(chosen);
- for p=1:nn
- if i==chosen(p)
- J(i)=0;
- break;
- else
- J(i)=J(i)-sum(sum((wfeature{i}-wfeature{chosen(p)}).^2));
- end
- end
- end
- mi=min(J);
- for i=1:30
- if J(i)==0
- J(i)=mi;
- end
- end
- ma=max(J);
- for i=1:30
- if J(i)==ma
- chosen=[chosen i];
- break;
- end
- end
- end
- save Aerial1_6t_chosen chosen
- [mm nn]=size(chosen);
- tezh=[];
- for i=1:nn
- tezh=[tezh wfeature{chosen(i)}];
- end
- %%%%%%%%聚类
0 W6 X% i( t1 O+ L- [IDC,U]=kmeans(tezh,2);
- cc(IDC==1,1)=0;
- cc(IDC==2,1)=0.75;
2 D3 s$ j7 R( a5 E/ e& C- g=reshape(cc,M,N);
- figure,imshow(g);
5 C. c- {3 D3 R. |
1 E h1 k- ~+ {. X; q9 B$ f* L
2 e! P8 [1 a: i& V: \' d, i: C6 C' M(2)序列后向选择( SBS , Sequential Backward Selection )( `6 t0 Z0 Q% e: R
* p) ], g( T$ u
算法描述:从特征全集O开始,每次从特征集O中剔除一个特征x,使得剔除特征x后评价函数值达到最优。& i) D9 P& R* \% H" i( \1 N% N
$ i( A, i# o1 P) R) o算法评价:序列后向选择与序列前向选择正好相反,它的缺点是特征只能去除不能加入。
( X& j- q3 {8 }6 v7 V/ | c, c) d, U. o3 C7 E V2 z, m7 w+ _
* H, j; j) r$ J+ {4 @
1 I! K7 D! w+ ^( U) x- a代码:* x. n3 T! s: N. C
- C8 E9 H% K- k- %----4.17编 顺序后退法特征选择
- % {) n5 H5 p7 i3 H
- clear;
- clc;
- %--------特征导入 请自行修改
- / g) z; j; j$ \5 I% J6 q" H
- A=imread('lsy1.gif');
- [M N]=size(A);
- load coourfeature_0414_lsy1 %%%共生矩阵 96.14%
- feature{1}=coourfeature(:,1);
- feature{2}=coourfeature(:,2);
- feature{3}=coourfeature(:,3);
- load fuwavefeature_0413_lsy1 %%复小波 98.26%
- for i=1:13
- feature{3+i}=wavefeature(:,i);
- end
- load wavefeature_0413_feixia_lsy1%%%非下采样小波 97.58%
- for i=1:7
- feature{16+i}=wavefeature(:,i);
- end
- load wavefeature_0417_lsy1%%小波 97.65%
- for i=1:7
- feature{23+i}=wavefeature(:,i);
- end
- %%%%%%%----------归一化-归一化
. [' T4 q, ]; l) w6 }0 J% I9 m- [m n]=size(feature{1});
- for j=1:30%一共30组特征 这里 请自行修改
- mx=max(feature{j});
- mi=min(feature{j});
- mxx=(mx-mi);
- mii=ones([m n])*mi;
- feature{j}=(feature{j}-mii)./mxx;
- end
- %%---------------SBS
- / G% N2 e6 S1 n) `" u
- chosen=[];dele=[];
- for i=1:30
- chosen=[chosen i];
- end
1 Z! h; z5 d2 F. F @! n! X- for j=1:24 %%删10个,留20个
- J=zeros([1 30]);ii=0; %J(1)是删1的结果,J(2)是删除2 的结果......
- for i=1:30 %???dele 是必要的么???????????????????????%一共30组特征 这里 请自行修改
- [mm nn]=size(chosen);
- for p=1:nn
- if sum(i==dele)~=0
- J(i)=0;
- break;
- else
- for q=1:nn
- if (chosen(q)~=i) & (chosen(p)~=i)
- J(i)=J(i)-sum(sum((feature{chosen(q)}-feature{chosen(p)}).^2));
- end
- end
- end
- end
- end
- mi=min(J);
- for cc=1:30
- if J(cc)==0
- J(cc)=mi;
- end
- end
- [ma we]=max(J);
- dele=[dele we];
- for dd=1:nn
- if chosen(dd)==we
- chosen(dd)=[];
- end
- end
- % chosen=[2 4 5 6 7 8 9 11 12 13 14 19 20 22 23 26 27 28 29 30];
0 v6 E' @* F* u: v# W- [mm nn]=size(chosen);
- tezh=[];
- for i=1:nn
- tezh=[tezh feature{chosen(i)}];
- end
- %%%%%%%%聚类
- ; [/ K: m6 J1 w# m6 S
- [IDC,U]=kmeans(tezh,2);
- cc(IDC==1,1)=0;
- cc(IDC==2,1)=0.75;
- g=reshape(cc,M,N);
- figure,imshow(g);
- %%%%%%%%%%%%计算正确率
0 f m2 ] ?( ^9 H' }6 x- ju=ones(M)*0.75;
- for i=1:M
- for j=1:M/2
- ju(i,j)=0;
- end
- end
- ju2=g-ju;
- prob=prod(size(find(ju2~=0)))/(m*n)
- 1-prob+ i V" m" k/ \& ~% m& m# N$ P: x* A: E
( Y2 n1 C$ H3 q, k9 h8 B
6 l% ?, x9 w1 X. Z7 d
另外,SFS与SBS都属于贪心算法,容易陷入局部最优值。 |
|