|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
最大信息系数 maximal information coefficient (MIC),又称最大互信息系数。% F4 ^/ v. M5 w, D
$ A' X6 p" x, K7 `2 `3 r3 x
特征选择步骤3 n1 m+ E8 `. D0 Y- b
2 q) W$ s8 a) n& F①计算不同维度(特征)之间的MIC值,MIC值越大,说明这两个维度越接近。) g* h; ^ @% c3 M {! a1 W; @
②寻找那些与其他维度MIC值较小的维度,根据阈值选出这些特征。0 H1 w* h$ c9 N
③利用SVM训练
: k* V O% d% h. _4 m& Y④训练结果在测试集上判断错误率* m' v S9 x) L7 o4 k9 P1 C+ ^
! S: p1 N5 x9 @5 WMATLAB代码:! ]0 e- I$ n. c' |4 c C# z c" j' v8 [
& @0 w& u* e" w' I- clc
- load train_F.mat;
- load train_L.mat;
- load test_F.mat;
- load test_L.mat;
- Dim = 22;
- MIC_matrix = zeros(Dim, Dim);
- for i = 1:Dim
- for j = 1:Dim
- X_v = reshape(train_F(:,i),1,size(train_F(:,i),1));
- Y_v = reshape(train_F(:,j),1,size(train_F(:,j),1));
- [A, ~] = mine(X_v, Y_v);
- MIC_matrix(i, j) = A.mic;
- end
- end
- MIC_matrix(MIC_matrix>0.4) = 0;
- MIC_matrix(MIC_matrix~=0) = 1;
- inmodel = sum(MIC_matrix);
- threshold = sum(inmodel)/Dim;
- inmodel(inmodel <= threshold) = 0;
- inmodel(inmodel > threshold) = 1;
- model = libsvmtrain(train_L,train_F(:,inmodel));
- [predict_label, ~, ~] = libsvmpredict(test_L,test_F(:,inmodel),model);
- error=0;
- for j=1:length(test_L)
- if(predict_label(j,1) ~= test_L(j,1))
- error = error+1;
- end
- end
- error = error/length(test_L);
0 w& b1 I2 N" r, b6 L; n |
|