找回密码
 注册
关于网站域名变更的通知
查看: 444|回复: 1
打印 上一主题 下一主题

NSGA-Ⅱ算法C++实现(测试函数为ZDT1)

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2020-9-24 14:02 | 只看该作者 |只看大图 回帖奖励 |正序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
本帖最后由 pulbieup 于 2020-9-24 14:04 编辑
' M3 E4 M' ]  J- P$ t  q* G/ z, i$ `- n4 G7 c
在看C++实现之前,请先看一下NSGA-II算法概述:NSGA-II多目标遗传算法概述
1 O8 r  X: o. b- A& X7 q3 v% D+ r% k. d  G

) p/ |/ W2 Z% M' j7 V6 HNSGA-Ⅱ就是在第一代非支配排序遗传算法的基础上改进而来,其改进主要是针对如上所述的三个方面:: s& d. y: l: n; W( T: n9 Y
①提出了快速非支配排序算法,一方面降低了计算的复杂度,另一方面它将父代种群跟子代种群进行合并,使得下一代的种群从双倍的空间中进行选取,从而保留了最为优秀的所有个体;% Z& v- y6 C7 C
②引进精英策略,保证某些优良的种群个体在进化过程中不会被丢弃,从而提高了优化结果的精度;  A+ ?+ m7 o4 v7 ~) ?) t
③采用拥挤度和拥挤度比较算子,不但克服了NSGA中需要人为指定共享参数的缺陷,而且将其作为种群中个体间的比较标准,使得准Pareto域中的个体能均匀地扩展到整个Pareto域,保证了种群的多样性。
/ y1 ~$ y$ U. j5 f3 _) i0 @3 A* \: L+ L( O% y
头文件:" ~4 V" q- I8 y4 E& T( o
9 ^1 U3 {: N4 o' i" N. i/ F
  • #include<stdio.h>
  • #include<stdlib.h>
  • #include<Windows.h>
  • #include<math.h>
  • #include<time.h>
  • #include<iostream>
  • #define Dimension 2//基因维数,在这里即ZDT1问题xi的i的最大值
  • #define popsize 100//种群大小
  • #define generation 500 //繁衍代数
  • #define URAND (rand()/(RAND_MAX+1.0))//产生随机数
  • int temp1[popsize];//临时数组
  • int mark[popsize];//标记数组
  • //以上两个数组用于产生新的子代
  • using namespace std;# M+ b  R; H4 D
6 L, L6 N4 H+ y# N" Q
6 S8 U1 d2 a( @( E  E" H5 I
个体的类声明:
! U6 I1 {6 @  {  M) A- c
; k& O+ J* w& p: o$ n/ |
  • class individual
  • {
  • public:
  •     double value[Dimension];//xi的值
  •     int sp[2*popsize];
  •     //被支配个体集合SP。该量是可行解空间中所有被个体p支配的个体组成的集合。
  •     int np;
  •     //支配个数np。该量是在可行解空间中可以支配个体p的所以个体的数量。
  •     int is_dominated;//集合sp的个数
  •     void init();//初始化个体
  •     int rank;//优先级,Pareto级别为当前最高级
  •     double crowding_distance;//拥挤距离
  •     double fvalue[2];//ZDT1问题目标函数的值
  •     void f_count();//计算fvalue的值
  • };9 Y) u2 v1 w9 t$ F5 N$ d
) A4 J) o0 h. B9 r4 u, A% B

7 T$ C& V( |8 K( G/ I群体的类声明:& H/ }* G0 v9 z7 v; l, |3 g. Z' H
' s6 c2 y  H5 t* x8 u
  • class population
  • {
  • public:
  •     population();//类初始化
  •     individual P[popsize];
  •     individual Q[popsize];
  •     individual R[2*popsize];
  •     void set_p_q();
  •     //随机产生一个初始父代P,在此基础上采用二元锦标赛选择、
  •     //交叉和变异操作产生子代Q。P和Q群体规模均为popsize
  •     //将Pt和Qt并入到Rt中(初始时t=0),对Rt进行快速非支配解排序,
  •     //构造其所有不同等级的非支配解集F1、F2........
  •     int Rnum;
  •     int Pnum;
  •     int Qnum;
  •     //P,Q,R中元素的个数
  •     void make_new_pop();//产生新的子代
  •     void fast_nondominated_sort();//快速非支配排序
  •     void calu_crowding_distance(int i);//拥挤距离计算
  •     void f_sort(int i);//对拥挤距离降序排列
  •     void maincal();//主要操作
  •     int choice(int a,int b);
  •     //两个个体属于不同等级的非支配解集,优先考虑等级序号较小的
  •     //若两个个体属于同一等级的非支配解集,优先考虑拥挤距离较大的
  •     int len[2*popsize];//各个变异交叉后的群体Fi的长度的集合
  •     int len_f;//整个群体rank值
  • };
    . N; |  y; c1 ]. G  V: U

9 i( \# }7 w( ?6 s5 L9 M& [' z2 m2 I5 a0 ^; ?. O' i
全局变量及部分函数声明:# l# c  ?* Z4 p

! Z4 D4 r  J" j' y* i( u
  • individual F[2*popsize][2*popsize];
  • double rand_real(double low,double high)
  • //产生随机实数
  • {
  •     double h;
  •     h=(high-low)*URAND+low+0.001;
  •     if(h>=high)
  •         h=high-0.001;
  •     return h;
  • }
  • int rand_int(int low,int high)
  • //产生随机整数
  • {
  •     return int((high-low+1)*URAND)+low;
  • }
    3 K+ u8 Z" R8 Y7 k( S2 g4 x
. C: a& \7 x+ p' ]& y6 ?% _' U
8 x' x, C3 H! l9 D: N
关于排序函数qsort
& `7 x5 O1 m' S3 S, S6 d0 O# d5 H+ o& k5 P1 o
void qsort( void *base, size_t num, size_t width, int (__cdecl *compare )
1 O+ F% z7 r/ w/ \- E9 y$ v& g  r利用qsort对F数组按照cmp3排序0 z9 P, w5 W6 w4 L' M( S
/ ~$ G  J& q  V' J- ^
  • int cmp1(const void *a,const void *b)
  • //目标函数f1的升序排序
  • {
  •     const individual *e=(const individual *)a;
  •     const individual *f=(const individual *)b;
  •     if(e->fvalue[0]==f->fvalue[0])
  •         return 0;
  •     else if(e->fvalue[0]<f->fvalue[0])
  •         return -1;
  •     else return 1;
  • }
  • int cmp2(const void *a,const void *b)
  • //目标函数f2的升序排序
  • {
  •     const individual *e=(const individual *)a;
  •     const individual *f=(const individual *)b;
  •     if(e->fvalue[1]==f->fvalue[1])
  •         return 0;
  •     else if(e->fvalue[1]<f->fvalue[1])
  •         return -1;
  •     else return 1;
  • }
  • int cmp_c_d(const void *a,const void *b)
  • //对拥挤距离降序排序
  • {
  •     const individual *e=(const individual *)a;
  •     const individual *f=(const individual *)b;
  •     if(e->crowding_distance==f->crowding_distance)
  •         return 0;
  •     else if(e->crowding_distance<f->crowding_distance)
  •         return 1;
  •     else
  •         return -1;
  • }
  • void population::f_sort(int i)
  • {
  • int n;
  • n=len;
  • qsort(F,n,sizeof(individual),cmp_c_d);
  • }6 X+ J" X  X2 ]# T) @# n  C' I' Q

; q" [" }% t1 p; I% m3 A
) U3 ]5 w+ H0 e0 _群的初始化:
6 s  E: n/ _+ [+ \  q
; E: O" Q* w. \; [
  • population::population()
  • {
  •     int i;
  •     for(i=0;i<popsize;i++)
  •     {
  •         P.init();
  •     }
  •     for(i=0;i<popsize;i++)
  •     {
  •         P.f_count();
  •     }
  •     Pnum=popsize;
  •     Qnum=0;
  •     Rnum=0;
  • }
    ' J& G+ w4 Y' Q% U$ z
8 ~* m: ~8 `9 r; H4 k: F1 d  R
5 G: }/ Q) {! q7 @3 b+ t
个体初始化:
& E$ x/ x4 h" `! r0 O  r* `
( C3 c$ p5 l( L8 z
  • void individual::init()
  • {
  •     for(int i=0;i<Dimension;i++)
  •         value=rand_real(0.0,1.0);
  • }* X* c3 R; X( e7 `

$ U3 v* V! ~9 y* j4 ~2 T0 p. k6 e) k8 e' `! `$ C* U; f7 B5 y

* Q- ]$ X' q. I8 R; D利用二进制锦标赛产生子代:
2 v, |5 V& y, ?1 ?  q, w2 t& F5 o) \3 O9 a* w& }
1、随机产生一个初始父代Po,在此基础上采用二元锦标赛选择、交叉和变异操作产生子代Qo, Po 和Qo群体规模均为N
; a1 B! ]6 |3 T6 h1 j# k2、将Pt和Qt并入到Rt中(初始时t=0),对Rt进行快速非支配解排序,构造其所有不同等级的非支配解集F1、F2……..2 w% B! b& w; G1 p8 u! L
3、按照需要计算Fi中所有个体的拥挤距离,并根据拥挤比较运算符构造Pt+1,直至Pt+1规模为N,图中的Fi为F3( O, \5 R. s4 i/ d( H
7 s# `0 i6 X, U/ {

; Y+ j1 C+ ^7 Q% j5 \% \
* g: s; C3 c0 _% u8 k' H
& S# }* U) s2 X0 @( x4 u# B
  • void population::make_new_pop()
  • {
  •     int i,j,x,y,t1,t2,t3;
  •     double s,u,b;
  •     memset(mark,0,sizeof(mark));
  •     t3=0;
  •     while(t3<popsize/2)
  •     {
  •         while(t1=t2=rand_int(0,popsize-1),mark[t1]);
  •         while(t1==t2||mark[t2])
  •         {
  •             t2=rand_int(0,popsize-1);
  •         }
  •         t1=choice(t1,t2);
  •         temp1[t3++]=t1;
  •         mark[t1]=1;
  •     }
  •     for(i=0;i<popsize;i++)
  •     {
  •         s=rand_real(0.0,1.0);
  •         if(s<=0.9)
  •         {
  •             for(j=0;j<Dimension;j++)
  •             {
  •                 u=rand_real((0.0+1e-6),(1.0-1e-6));
  •                 if(u<=0.5)
  •                     b=pow(2*u,1.0/21);
  •                 else
  •                     b=1.0/pow(2*(1-u),1.0/21);
  •                 x=y=rand_int(0,popsize/2-1);
  •                 while(x==y)
  •                     y=rand_int(0,popsize/2-1);
  •                 Q.value[j]=1.0/2*((1-b)*P[temp1[x]].value[j]+(1+b)*P[temp1[y]].value[j]);
  •                 if(Q.value[j]<0)
  •                     Q.value[j]=1e-6;
  •                 else if(Q.value[j]>1)
  •                     Q.value[j]=1.0-(1e-6);
  •                 if(i+1<popsize)
  •                 {
  •                     Q[i+1].value[j]=1.0/2*((1+b)*P[temp1[x]].value[j]+(1-b)*P[temp1[y]].value[j]);
  •                     if(Q[i+1].value[j]<=0)
  •                         Q[i+1].value[j]=1e-6;
  •                     else if(Q[i+1].value[j]>1)
  •                         Q[i+1].value[j]=(1-1e-6);
  •                 }
  •             }
  •             i++;
  •         }
  •         else
  •         {
  •             for(j=0;j<Dimension;j++)
  •             {
  •                 x=rand_int(0,popsize/2-1);
  •                 u=rand_real(0.0+(1e-6),1.0-(1e-6));
  •                 if(u<0.5)
  •                     u=pow(2*u,1.0/21)-1;
  •                 else
  •                     u=1-pow(2*(1-u),1.0/21);
  •                 Q.value[j]=P[temp1[x]].value[j]+(1.0-0.0)*u;
  •                 if(Q.value[j]<0)
  •                     Q.value[j]=1e-6;
  •                 else if(Q.value[j]>1)
  •                     Q.value[j]=1-(1e-6);
  •             }
  •         }
  •     }
  •     Qnum=popsize;
  •     for(i=0;i<popsize;i++)
  •         Q.f_count();
  • }
    3 I4 c' s1 @& ^+ Z! l+ V1 g% G

# E/ g8 `2 U! ~! r6 D) ~9 ]2 ?3 q( F( S: ]4 k2 O
  • void population::set_p_q()
  • {
  •     Rnum=0;
  •     Qnum=popsize;
  •     int i;
  •     for(i=0;i< Pnum;i++)
  •         R[Rnum++]=P;
  •     for(i=0;i<Qnum;i++)
  •         R[Rnum++]=Q;
  •     for(i=0;i<2*popsize;i++)
  •         R.f_count();
  • }
    . ]2 D; {/ V0 X0 N
$ w: {' `  ^9 G& f2 ]- Y
/ B8 E+ i( w2 @3 C2 l
ZDT1问题函数值的计算:
; s% u+ s- C6 ^1 W, l/ `" A% C/ B8 ^1 P: o& V

: T% n( u6 I% H; b0 j8 K) u
& y* f, s/ u0 ]+ D. ?
  • void individual::f_count()
  • {
  •     fvalue[0]=value[0];
  •     int i;
  •     double g=1,sum=0;
  •     for(i=1;i<Dimension;i++)
  •     {
  •         sum+=value;
  •     }
  •     sum+=9*(sum/(Dimension-1));
  •     g+=sum;
  •     fvalue[1]=g*(1-sqrt(value[0]/g));
  • }$ c/ U7 ^0 p# `5 y8 c

$ t# w+ P1 A; d/ W+ o  A0 O7 Y, |  k% }, [5 S* T
判断目标函数值是否被支配:
3 Q4 [! T5 Z% g" Z. a0 C% Q- V/ R, r0 e
  • bool e_is_dominated(const individual &a,const individual &b)
  • {
  •     if((a.fvalue[0]<=b.fvalue[0])&&(a.fvalue[1]<=b.fvalue[1]))
  •     {
  •         if((a.fvalue[0]==b.fvalue[0])&&a.fvalue[1]==b.fvalue[1])
  •             return false;
  •         else
  •             return true;
  •     }
  •     else
  •         return false;
  • }
      Y; G3 G' q5 d
- n; R% N, U* |4 _
3 a; z" u$ Z5 M/ E
快速非支配排序法:重点!!!
1 z% B# v3 n/ G- J1 a4 `0 g, ~4 \( P
  • void population::fast_nondominated_sort()
  • {
  •     int i,j,k;
  •     individual H[2*popsize];
  •     int h_len=0;
  •     for(i=0;i<2*popsize;i++)
  •     {
  •         R.np=0;
  •         R.is_dominated=0;
  •         len=0;
  •     }
  •     for(i=0;i<2*popsize;i++)
  •     {
  •         for(j=0;j<2*popsize;j++)
  •         {
  •             if(i!=j)
  •             {
  •                 if(e_is_dominated(R,R[j]))
  •                     R.sp[R.is_dominated++]=j;
  •                 else if(e_is_dominated(R[j],R))
  •                     R.np+=1;
  •             }
  •         }
  •         if(R.np==0)
  •         {
  •             len_f=1;
  •             F[0][len[0]++]=R;
  •         }
  •     }
  •     i=0;
  •     while(len!=0)
  •     {
  •         h_len=0;
  •         for(j=0;j<len;j++)
  •         {
  •             for(k=0;k<F[j].is_dominated;k++)
  •             {
  •                 R[F[j].sp[k]].np--;
  •                 if(R[F[j].sp[k]].np==0)
  •                 {
  •                     H[h_len++]=R[F[j].sp[k]];
  •                     R[F[j].sp[k]].rank=i+2;
  •                 }
  •             }
  •         }
  •         i++;
  •         len=h_len;
  •         if(h_len!=0)
  •         {
  •             len_f++;
  •             for(j=0;j<len;j++)
  •                 F[j]=H[j];
  •         }
  •     }
  • }9 l" v- P* S1 z0 Z/ ^
4 L6 U/ n9 l( i7 \/ C0 k

4 U9 e1 o$ O* H8 R6 l
5 q  p8 W, Z* D+ j9 p- z计算拥挤距离:重点!!!具体解释见其他文章!!!7 V% F  v  c# `' ?' e& L
. g* A# m: M( [6 d; T

5 ?- ~: G9 u% [0 C4 O, E
* u7 s! n8 F9 r  `* N; n) [0 l" S& W. Y8 _# E6 r8 ^
  • void population::calu_crowding_distance(int i)
  • {
  •     int n=len;
  •     double m_max,m_min;
  •     int j;
  •     for(j=0;j<n;j++)
  •         F[j].crowding_distance=0;
  •     F[0].crowding_distance=F[n-1].crowding_distance=0xffffff;
  •     qsort(F,n,sizeof(individual),cmp1);
  •     m_max=-0xfffff;
  •     m_min=0xfffff;
  •     for(j=0;j<n;j++)
  •     {
  •         if(m_max<F[j].fvalue[0])
  •             m_max=F[j].fvalue[0];
  •         if(m_min>F[j].fvalue[0])
  •             m_min=F[j].fvalue[0];
  •     }
  •     for(j=1;j<n-1;j++)
  •         F[j].crowding_distance+=(F[j+1].fvalue[0]-F[j-1].fvalue[0])/(m_max-m_min);
  •     F[0].crowding_distance=F[n-1].crowding_distance=0xffffff;
  •     qsort(F,n,sizeof(individual),cmp2);
  •     m_max=-0xfffff;
  •     m_min=0xfffff;
  •     for(j=0;j<n;j++)
  •     {
  •         if(m_max<F[j].fvalue[1])
  •             m_max=F[j].fvalue[1];
  •         if(m_min>F[j].fvalue[1])
  •             m_min=F[j].fvalue[1];
  •     }
  •     for(j=1;j<n-1;j++)
  •         F[j].crowding_distance+=(F[j+1].fvalue[1]-F[j-1].fvalue[1])/(m_max-m_min);
  • }
    + a8 C% h2 Q; n* r$ a7 q8 F" E

! ~) R$ }; o1 k( W. S
1 ~! _6 L$ Y$ l7 @9 S$ V% T采集多样性的选择:
1 r' x+ E4 d  ?8 b% Z) f  d" L2 y1 C
  • int population::choice(int a,int b)
  • {
  •     if(P[a].rank<  P .rank)
  •         return a;
  •     else if(P[a].rank==P.rank)
  •     {
  •         if(P[a].crowding_distance>  P  .crowding_distance)
  •             return a;
  •         else
  •             return b;
  •     }
  •     else
  •         return b;
  • }
    9 o7 y6 j: R1 k! o6 g- e

  d$ D( K9 |' E
$ |$ t6 n5 X, v  m4 \& ]
6 G% `" P; f0 w3 ]/ |; u. A主要操作函数:
7 K9 t! N6 `  y: W9 p, c
, n2 e$ ]% Y8 r% S
  • void population::maincal()
  • {
  •     int s,i,j;
  •     s=generation;
  •     make_new_pop();
  •     while(s--)
  •     {
  •         printf("The %d generation\n",s);
  •         set_p_q();
  •         fast_nondominated_sort();
  •         Pnum=0;
  •         i=0;
  •         while(Pnum+len<=popsize)
  •         {
  •             calu_crowding_distance(i);
  •             for(j=0;j<len;j++)
  •                 P[Pnum++]=F[j];
  •             i++;
  •             if(i>=len_f)break;
  •         }
  •         if(i<len_f)
  •         {
  •             calu_crowding_distance(i);
  •             f_sort(i);
  •         }
  •         for(j=0;j<popsize-Pnum;j++)
  •             P[Pnum++]=F[j];
  •         make_new_pop();
  •     }
  • }
    . K" c' H4 @) |5 `- r( ]
: a  f, g8 w1 k1 {
+ q4 Q$ J! _' ?0 x
主函数:
% Y: S: a2 H  o8 @4 g1 b' ?1 ~" }' v: ?8 h* G8 }
  • int main()
  • {
  •     FILE *p;
  •     p=fopen("d:\\My_NSGA2.txt","w+");
  •     srand((unsigned int)(time(0)));
  •     population pop;
  •     pop.maincal();
  •     int i,j;
  •     fprintf(p,"XuYi All Rights Reserved.\nWelcome to OmegaXYZ: www.omegaxyz.com\n");
  •     fprintf(p,"Problem ZDT1\n");
  •     fprintf(p,"\n");
  •     for(i=0;i<popsize;i++)
  •     {
  •         fprintf(p,"The %d generation situation:\n",i);
  •         for(j=1;j<=Dimension;j++)
  •         {
  •             fprintf(p,"x%d=%e  ",j,pop.P.value[j]);
  •         }
  •         fprintf(p,"\n");
  •         fprintf(p,"f1(x)=%f   f2(x)=%f\n",pop.P.fvalue[0],pop.P.fvalue[1]);
  •     }
  •     fclose(p);
  •     return 1;
  • }7 g) D% S. K" g

% f+ }. W2 G, m/ M) r3 s
) [3 E8 ^/ i  j- a3 U+ S9 W( B
; m" d. m& F! q9 bZDT1问题图像及前沿面。
6 T0 i( s/ }. x2 d6 c0 {
. v1 q9 m& S( Z0 ^' C, Z' J1 s/ }) w
$ z: V$ A) q  y$ n0 p# Y! V ' [) y: v4 S" s

: V. m8 P- e# m3 N# q" A5 f测试结果:. W+ p' _9 G* ^2 u. [# \

该用户从未签到

2#
发表于 2020-9-24 14:51 | 只看该作者
NSGA-Ⅱ算法C++实现
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-11-24 16:30 , Processed in 0.250000 second(s), 27 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表