找回密码
 注册
关于网站域名变更的通知
查看: 422|回复: 1
打印 上一主题 下一主题

NSGA2算法MATLAB

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2020-5-20 10:18 | 只看该作者 |只看大图 回帖奖励 |正序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
那个NSGA2的算法不具有普遍性,下面参考课国外的课题小组的代码重新修改了内部冗余内容,使之能够自定义优化函数。 5 g2 s' E& @* S+ B5 G0 z

- A# M& q2 m4 [2 }6 c8 p  c( N$ B" D- w5 `0 X! ]- v' Q
NSGA2的过程为:# ?: a/ \) P& U4 _% v. L, G
# E; \  s  Y5 X1 z8 f# f, A
1、随机产生一个初始父代Po,在此基础上采用二元锦标赛选择、交叉和变异操作产生子代Qo, Po 和Qo群体规模均为N3 H2 x4 @2 m& W7 p& m8 n

  g# V, t' N9 p. ?3 n+ x. s+ ~2、将Pt和Qt并入到Rt中(初始时t=0),对Rt进行快速非支配解排序,构造其所有不同等级的非支配解集F1、F2……..
0 O4 y$ L0 h  N9 I1 k) R5 W% h
% m4 F) f: m: Q! }) ?' y3、按照需要计算Fi中所有个体的拥挤距离,并根据拥挤比较运算符构造Pt+1,直至Pt+1规模为N,图中的Fi为F3
+ s5 ^# i) ?- h& g- P0 ]' t! f
9 x" C1 `$ r; }6 |下面是完整版的代码:
% w6 K: Z2 G( L- k$ Y4 \4 {5 s( t% }, ?" b& R/ O! C
①nsga2-optimization.m
+ @; F: g3 p% w2 S" C
/ o, h/ u3 M4 q4 y' b7 _function nsga_2_optimization
+ _3 m3 j, h' ?0 t' T$ s/ ~1 p) Y/ x%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
/ x0 z  \& x7 D$ h1 X4 r( |7 Z%此处可以更改
6 Z1 h7 x2 W( P$ h' A%更多机器学习内容请访问omegaxyz.com6 D9 }7 i2 |6 f. q$ n' ~
pop = 500; %种群数量! E* R) @) z3 T* J2 v3 g
gen = 500; %迭代次数# u4 e& E; P6 L2 t
M = 2; %目标数量
7 M/ C4 e& U+ A; t. S3 p( _1 l, PV = 30; %维度/ g9 L) _' r+ k: s! j1 H
min_range = zeros(1, V); %下界
" \- t7 R" v" w: x% Dmax_range = ones(1,V); %上界) @+ _6 C6 W+ @) ~
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9 u3 R8 \  ]) j0 ichromosome = initialize_variables(pop, M, V, min_range, max_range);
1 U5 Q8 y6 t  T: l, v5 Xchromosome = non_domination_sort_mod(chromosome, M, V);* L& k2 }9 s2 O* F' ~
/ X: c: X- v# z4 [/ H
for i = 1 : gen
$ S9 k- d! ]$ e& i" v    pool = round(pop/2);
/ I3 R, i! p. A0 h# A    tour = 2;
* {4 S0 h/ S1 f$ x    parent_chromosome = tournament_selection(chromosome, pool, tour);
! C$ X4 J2 @8 X) W- {7 N    mu = 20;
% G. b3 G6 A" K0 f    mum = 20;) b8 W7 j: W$ G  Y7 h' g
    offspring_chromosome = genetic_operator(parent_chromosome,M, V, mu, mum, min_range, max_range);
' X3 x3 A1 v9 Z  A( p5 Y    [main_pop,~] = size(chromosome);
; L/ [4 l  x6 [4 b1 C    [offspring_pop,~] = size(offspring_chromosome);4 v' B" L$ ]4 l5 m
    clear temp
  {: O% W) B2 P    intermediate_chromosome(1:main_pop,:) = chromosome;( m+ B* Y0 k! v
    intermediate_chromosome(main_pop + 1 : main_pop + offspring_pop,1 : M+V) = offspring_chromosome;
& N2 A* E1 l. Y; Y7 G; ^    intermediate_chromosome = non_domination_sort_mod(intermediate_chromosome, M, V);- X" D9 Z# y: A! x% o6 t
    chromosome = replace_chromosome(intermediate_chromosome, M, V, pop);9 A  \9 Y3 f' \
    if ~mod(i,100)8 ^& r" B) `! A# L
        clc;. Q8 U9 _4 ~9 ~: z' p# f4 e7 Q
        fprintf('%d generations completed\n',i);
& ], X9 [6 x) K7 _6 d& W    end& S+ d9 M$ u" l0 ~) s- N
end( c- t- p+ f8 R, }$ _7 u# N! p
/ r  L! g2 z9 Z
if M == 2
& D1 U5 N- V; I! k  |    plot(chromosome(:,V + 1),chromosome(:,V + 2),'*');/ W. e9 S6 `* d% b
    xlabel('f_1'); ylabel('f_2');
; U& `8 u2 l9 e3 b7 D& Q: t/ d! U0 E1 z    title('Pareto Optimal Front');
" V( |* q0 w( Y3 m) j9 h( Oelseif M == 3
7 }" V. S+ ^- P0 e- J8 W    plot3(chromosome(:,V + 1),chromosome(:,V + 2),chromosome(:,V + 3),'*');2 e7 h- F3 c+ M" B6 e2 r" z
    xlabel('f_1'); ylabel('f_2'); zlabel('f_3');
3 |8 Q. f1 j  e+ f    title('Pareto Optimal SuRFace');
7 w: Y& d! @7 u. l8 mend
# B! I( o: b. S6 \# f% ^" y6 Q. c" _1 h* t6 u* k) r

* m0 ?/ |6 f. ]  E②initialize_variables.m, g" |- m6 i, t

% ?; `& u9 f' J' z& q% {+ l5 s8 Qfunction f = initialize_variables(N, M, V, min_range, max_range)' B8 ~( `+ D. e/ f. I
min = min_range;
0 G! t/ f6 [& f" d/ Gmax = max_range;& c: u( v' u9 b9 `3 [: k, s
K = M + V;
; e, K/ ]5 e9 {+ xfor i = 1 : N4 N7 j5 `% s" _' E& ?
    for j = 1 : V" I" a# C; [9 ?
        f(i,j) = min(j) + (max(j) - min(j))*rand(1);
% l; `+ w+ E7 Y    end$ N! \% m: b, ^7 |9 @) c
    f(i,V + 1: K) = evaluate_objective(f(i,:), M, V);# n1 p) x* O$ L' t" `9 z  `( x; z
end
! i8 k% b8 i6 ]% P7 u2 |, \
. G" Q/ _  y" S- `/ T- M5 h
: d9 v- X: Y! L; P' ~③non_domination_sort_mod.m
  Z9 @* E/ {( w* R3 s1 s) a1 \' V! `- _5 D$ p
function f = non_domination_sort_mod(x, M, V)
' [5 u# |. t& I+ \8 A) w[N, ~] = size(x);
' C- x7 w/ j3 v- _& a% C0 Yclear m* ]' W* T/ ]! D9 W
front = 1;4 h+ I2 Z8 p" L! E
F(front).f = [];; f" r# a; a  G- c2 a# l
individual = [];
) M1 d) v, Z$ n$ B1 A, P. `8 P
2 H$ U  O" `% L+ efor i = 1 : N
# ^' M8 U! N% J' \+ Z    individual(i).n = 0;
+ v# D; m3 K/ n4 V. L    individual(i).p = [];
3 ~' H. a2 r' J$ a! I$ Z    for j = 1 : N, [4 [( P( x4 ^# F& e+ g
        dom_less = 0;
7 C+ Y' D/ x8 y        dom_equal = 0;
: W& k8 Q7 f1 L. Z2 |6 Q        dom_more = 0;( d( V( w) ?/ A! ~+ p/ E: f
        for k = 1 : M8 X; f# v0 r# y/ O9 n0 @. Z, f
            if (x(i,V + k) < x(j,V + k))- d# a  @5 k, {/ a9 [* i+ J2 Y
                dom_less = dom_less + 1;
+ X- P2 G3 `" q* F" u- {            elseif (x(i,V + k) == x(j,V + k)): {" \8 a- D, B( w, X' i; `
                dom_equal = dom_equal + 1;- _2 B) z' _" c7 L& N, ~7 Q) \6 m
            else% A, y0 _: \+ Y8 v) d% Y6 J
                dom_more = dom_more + 1;
7 M. z' {# I6 ]( Q- e$ v% T( V3 I            end
, A. S3 `- n9 P) Z" Q0 Z; i        end7 @3 k# a3 o+ |0 ~6 |
        if dom_less == 0 && dom_equal ~= M
  J# ]0 z- Q- `4 z$ W            individual(i).n = individual(i).n + 1;
9 h* o1 h: i( ^# e        elseif dom_more == 0 && dom_equal ~= M  s# ~' [  \6 q0 p5 l
            individual(i).p = [individual(i).p j];$ k) W, o: z$ r
        end
; R4 X3 Z, }6 p    end   
6 ?" T- e6 Z; S4 L! g5 ^    if individual(i).n == 0; d8 _7 j1 i' A5 E) d2 d2 n- j+ d
        x(i,M + V + 1) = 1;
* m* @. I8 T4 Q2 a# B* ?        F(front).f = [F(front).f i];
2 c1 a0 M, [% S6 Z* [& G    end
- L5 X/ o, B( X5 K4 t) @end2 V" u5 T1 L# R, ~: S0 d& A
5 R% m/ }! a* `, [
while ~isempty(F(front).f)4 o9 V( f9 M- l/ u
   Q = [];2 E( ]( H1 Y6 m3 x" ~
   for i = 1 : length(F(front).f)- w1 k) v5 a% g1 V' o6 q3 I3 k3 h
       if ~isempty(individual(F(front).f(i)).p)
% ~, _) W1 R, Z& ?( ?( P+ c            for j = 1 : length(individual(F(front).f(i)).p)! B4 L- D9 e4 }8 \; n
                individual(individual(F(front).f(i)).p(j)).n = ...2 v7 I1 V  g4 K
                    individual(individual(F(front).f(i)).p(j)).n - 1;/ w& d/ k1 k# l! n9 `0 u
                if individual(individual(F(front).f(i)).p(j)).n == 0
4 e+ [. y0 a( [( g                    x(individual(F(front).f(i)).p(j),M + V + 1) = ...
" K. V/ I2 d& R( f# \                        front + 1;
# x/ z/ N3 _) S# n+ A5 O0 R                    Q = [Q individual(F(front).f(i)).p(j)];% X; h) N" H! x) }
                end  c( d6 d9 B7 I/ J! q# P8 U
            end3 X: l5 m; ?1 W
       end" u( T4 x3 q+ E2 M! J( ?+ ]) L
   end7 D+ T# E# N6 n3 O
   front =  front + 1;
- d% }  c2 m' l# k; n$ e4 B% \% Q   F(front).f = Q;/ h/ F0 D' b9 A% K' s/ b7 `) ]
end
' I! g& a6 A% e; E/ R* V( R
) U% M$ A; V5 X[temp,index_of_fronts] = sort(x(:,M + V + 1));
0 C9 H" x' X/ \4 F2 W# Lfor i = 1 : length(index_of_fronts)2 e' c! S6 I8 m5 `9 P0 A  H
    sorted_based_on_front(i,:) = x(index_of_fronts(i),:);
# @2 a. O: e9 R  {; ~end
9 `: k2 f% V- {! g/ h+ O) icurrent_index = 0;
7 _9 |) x' Z3 Q2 W& W# c# N' M4 V' C# i6 U0 x3 m2 Y% X$ G
%% Crowding distance% w3 o) c2 Z6 H: x3 Z9 ]( B

+ [$ g1 F5 [1 e4 l$ }0 ffor front = 1 : (length(F) - 1)* Q* |  X; _4 D4 r9 R# ^( K
    distance = 0;( J: j+ k# O0 j; `
    y = [];
6 t* b, r; j4 J- ~0 m; U    previous_index = current_index + 1;' X8 w* X5 X9 T6 v) a! r
    for i = 1 : length(F(front).f)
* N8 [! B) B# N/ y7 S        y(i,:) = sorted_based_on_front(current_index + i,:);7 {1 H1 E5 h1 L/ C
    end
1 J% [% D) S% C5 K1 L1 I. m, Z    current_index = current_index + i;; \' X; S8 {: t5 w8 K! R
    sorted_based_on_objective = [];& r6 A" Y! n' W
    for i = 1 : M2 K+ Q' W, O6 L: `7 ^
        [sorted_based_on_objective, index_of_objectives] = .... H8 g5 }* _$ n' P( i
            sort(y(:,V + i));
' u3 ?+ c3 {6 h3 K5 k* Z" k) s        sorted_based_on_objective = [];
  b) ^6 p$ M8 [* {- ]" m# n+ g        for j = 1 : length(index_of_objectives)- p/ c* Z, O7 M" o) a
            sorted_based_on_objective(j,:) = y(index_of_objectives(j),:);" J8 z6 e7 W7 h# E8 i) A: _
        end0 C8 E: Q* K' r  G% l9 H
        f_max = ...9 o5 d6 e+ F/ k1 `1 R/ i* P) w
            sorted_based_on_objective(length(index_of_objectives), V + i);
. K& R, w$ J0 u        f_min = sorted_based_on_objective(1, V + i);+ F3 z1 c0 |  T$ i# [1 a. _& k' c$ X
        y(index_of_objectives(length(index_of_objectives)),M + V + 1 + i)...! |) Z/ Z) v& b
            = Inf;, T/ y9 z( \* C+ t7 J' G9 r. ]2 }
        y(index_of_objectives(1),M + V + 1 + i) = Inf;
$ [4 j! Z* e: n6 Z- X* }         for j = 2 : length(index_of_objectives) - 1
6 u: ?/ n+ J& O  O            next_obj  = sorted_based_on_objective(j + 1,V + i);6 F3 B7 ~! Z9 ^2 O, Z/ h
            previous_obj  = sorted_based_on_objective(j - 1,V + i);" p7 H4 _. j6 O' ]$ U4 }  i% b
            if (f_max - f_min == 0)
! \; o, L/ s: ]+ _9 w2 k% f2 @                y(index_of_objectives(j),M + V + 1 + i) = Inf;
6 u7 y) w5 ?$ F. S4 N            else
( o& k/ I/ K" n+ T                y(index_of_objectives(j),M + V + 1 + i) = ...- ~1 c+ `! L% g* d8 q: U
                     (next_obj - previous_obj)/(f_max - f_min);
4 ]( {9 v  X9 m' W% C7 `/ W            end9 g+ u0 n1 k5 ~4 _% l5 _" k
         end
9 [% v7 K4 Q! Y5 ^9 {& Y2 b    end" |* o. X5 ~7 f0 e6 @6 t
    distance = [];  ]& }, m- c, G+ `( X7 q- [) @
    distance(:,1) = zeros(length(F(front).f),1);
8 [, _/ d4 T' Q5 l& Q( t    for i = 1 : M
4 c9 P* v4 X! n8 \( ?" `        distance(:,1) = distance(:,1) + y(:,M + V + 1 + i);
' [$ E7 Q! V1 M6 J- {$ f    end4 M. \+ P5 Q+ A" q+ f
    y(:,M + V + 2) = distance;- H" p: F# m) ^. U2 k
    y = y(:,1 : M + V + 2);2 T: A  G+ B0 L) u  J9 Y2 v* r
    z(previous_index:current_index,:) = y;" ~4 Z) _# f3 ~% [" O/ ~* W  Z( L4 E
end% a* q7 a+ Y0 p  T0 Z
f = z();7 }" k# V( j2 w" G: _

1 q2 T7 V8 a7 J7 b+ ~
* x2 v' w- c% O9 C④tournament_selection.m4 m( [% A, W' X+ C$ s% x) p
, d$ g8 V. o1 @  Y& {
function f = tournament_selection(chromosome, pool_size, tour_size)7 b  ]/ |- [: d; L: t
[pop, variables] = size(chromosome);. n0 p. n7 I$ Y4 p6 o
rank = variables - 1;# A. B  T& c: e, L- f
distance = variables;7 Y' S9 A! f0 |7 g0 a6 b
for i = 1 : pool_size
* G6 G7 g5 _" R* A5 f1 |    for j = 1 : tour_size5 M; h$ J* S) v% V) q7 y
        candidate(j) = round(pop*rand(1));
  X* A) p& r7 i, E9 y' r2 `9 ?        if candidate(j) == 0
% U3 {, J0 j1 r$ g  `- U" Q6 m            candidate(j) = 1;
; M# e6 q& A: k% `9 |" D$ T: B6 _. p$ ~        end
/ _& T& m) l$ d8 \8 o/ x        if j > 1
) e/ Z) F& s2 u" `% r7 g" R6 k            while ~isempty(find(candidate(1 : j - 1) == candidate(j)))0 x! {0 ]) j! f  c# B- v
                candidate(j) = round(pop*rand(1));
& K1 f* [9 ^. ^. W                if candidate(j) == 0" @' {1 ?: j- t* V8 h* }" Z
                    candidate(j) = 1;* x2 S- i( m* P' n8 y2 O9 N
                end% c9 h0 @, Z8 {1 c% p2 `- E
            end
/ }  C+ c5 ^: d3 s8 l& z        end
" P+ c4 m: `1 C9 {# k    end
& \% P2 U* j; u2 Y1 k    for j = 1 : tour_size2 v% X9 \+ j# V. V0 d% C0 O& B
        c_obj_rank(j) = chromosome(candidate(j),rank);
; J; G; ^# C2 ?  p- A        c_obj_distance(j) = chromosome(candidate(j),distance);7 v! W! W- ?* V2 x. b
    end
5 X, H: Q/ k  R' C    min_candidate = ...
% S; q# h; E8 j5 M        find(c_obj_rank == min(c_obj_rank));
* W( Y$ q- N' i' U/ e1 y    if length(min_candidate) ~= 1
: W% |! g$ V$ C. G* K        max_candidate = ...
6 ~7 E% J, X, o        find(c_obj_distance(min_candidate) == max(c_obj_distance(min_candidate)));5 q. ^2 I" R; b# N) e5 \( Z
        if length(max_candidate) ~= 17 c2 K9 ?8 H/ ^' @+ C/ u. t4 K
            max_candidate = max_candidate(1);6 m. ^. H$ o1 f; C5 M3 ~# `
        end9 c( B5 a4 \: @9 w/ m+ n! U; _
        f(i,:) = chromosome(candidate(min_candidate(max_candidate)),:);1 f2 \, i' \' E6 L& }/ V
    else
! I& N) h* H4 W        f(i,:) = chromosome(candidate(min_candidate(1)),:);3 u' f1 r* Y# S: c& N  Y0 x
    end
1 i# p, s! f. N; V# Q( T' Nend* F- s  ~9 E9 E2 ~# \5 w

, R% V) Y8 w  Y
+ V3 j. Y; C! ?% j- L; j* P! K⑤genetic_operator.m& X/ g  M  o/ _2 B7 w& g3 T

/ U2 [! o9 D  H# ifunction f  = genetic_operator(parent_chromosome, M, V, mu, mum, l_limit, u_limit)8 A! A8 _0 |9 V. j# {0 [
[N,m] = size(parent_chromosome);
/ \1 l) s" m! r8 C0 I$ @
. V' p) Y, X0 R; Eclear m# u$ q+ _5 K/ A+ r6 F
p = 1;
5 A. _; ^: t. U3 G5 Dwas_crossover = 0;
( S( d6 J( {& @! V! Gwas_mutation = 0;
+ j  z% g: `+ {4 z; A$ e. t
$ I" d6 L  f* z4 t, T( U5 l8 ~7 v1 `/ k5 U
for i = 1 : N
1 s( [% j7 h1 S5 A  B' Z    % With 90 % probability perform crossover/ D( t8 P/ m1 e7 H( V( M" K
    if rand(1) < 0.9! t) z* i) h( [
        % Initialize the children to be null vector.0 I  n* ~! D; @) v
        child_1 = [];
/ h9 \- p. W1 t& O        child_2 = [];( D0 N8 x  `/ h  ]
        % Select the first parent* m) `4 O# c& V+ }  D
        parent_1 = round(N*rand(1));/ y9 o5 I6 @: S' S+ R2 Y0 X8 J
        if parent_1 < 1
! a4 T4 h. A3 X7 }6 z$ z* c            parent_1 = 1;. N# w" K9 @) R; Z# V0 I
        end
& H& x. Y# j8 r& k        % Select the second parent5 T) ~5 s* i7 N2 J# j7 M( c: A
        parent_2 = round(N*rand(1));" o& ?0 j$ P  V
        if parent_2 < 1/ e8 Y+ h. i4 N( B! [+ i' D
            parent_2 = 1;/ w6 U5 a9 P$ ?& ~' B, H
        end2 B& F- U0 r9 P) t
        % Make sure both the parents are not the same.
1 L1 O( Q8 m! \9 ^- {; u1 q" k        while isequal(parent_chromosome(parent_1,:),parent_chromosome(parent_2,:))
6 w- L7 P; x: U; T1 V            parent_2 = round(N*rand(1));9 H. t) G% e; r( a
            if parent_2 < 1+ `" n/ O( Z4 A# ]: a
                parent_2 = 1;
% ^" j% A* _% f" V! z( r) C2 l% @            end
" s" t9 C: Z( C# D& i6 N! ]0 V        end
& P+ E+ M/ ?* Y% }+ O, w        % Get the chromosome information for each randomnly selected/ u) W# [- y1 `8 o
        % parents; e" v: r, D! s; Q( i3 M
        parent_1 = parent_chromosome(parent_1,:);% f/ m) I$ j1 D2 s% N3 u% Q0 }* L9 q
        parent_2 = parent_chromosome(parent_2,:);
! n8 y- I/ }. }0 E/ h1 U( }$ J: {        % Perform corssover for each decision variable in the chromosome.0 E# J" C" u- I# O& l
        for j = 1 : V) q# Z- c' \( `  X9 T) B9 h; g
            % SBX (Simulated Binary Crossover).) m6 X2 A. C/ e7 t0 ?  T  a
            % For more information about SBX refer the enclosed pdf file.
' c& T% D: Y2 Y: c) B            % Generate a random number
7 Q% I) N" n& n            u(j) = rand(1);0 P5 r2 S, {0 V/ M9 R1 f' ^3 V
            if u(j) <= 0.5
: l! J' x& h4 m0 d# I                bq(j) = (2*u(j))^(1/(mu+1));* z4 y: {4 C( ~2 A9 ?
            else9 U- B* l( \/ k0 f3 B' a
                bq(j) = (1/(2*(1 - u(j))))^(1/(mu+1));6 l+ {4 n$ z7 z0 g, s) Z0 _
            end/ H% k$ ~9 n; G. y8 f
            % Generate the jth element of first child& W% A+ s, d6 f" p
            child_1(j) = ...
6 k, D. y) C& M                0.5*(((1 + bq(j))*parent_1(j)) + (1 - bq(j))*parent_2(j));
0 ~9 b1 f6 J4 g8 d            % Generate the jth element of second child3 f6 O+ W3 S6 x$ g8 O
            child_2(j) = ...
  r+ Y9 G2 ?1 [$ y. {                0.5*(((1 - bq(j))*parent_1(j)) + (1 + bq(j))*parent_2(j));) r. N. B; k* D  F% N
            % Make sure that the generated element is within the specified
& ~( ~: ]3 @5 J; c            % decision space else set it to the appropriate extrema.
$ e) H( O+ [2 k+ f$ k            if child_1(j) > u_limit(j)
0 X: d" g# E. f2 k. n) K                child_1(j) = u_limit(j);
1 Q' o3 s) E* l            elseif child_1(j) < l_limit(j)
& [# T, f+ j; c- A                child_1(j) = l_limit(j);
3 r& D) `; q( |$ p) h8 l% `& I            end
2 u& n* a: g5 F' {3 c, y, q            if child_2(j) > u_limit(j)) L6 V  N  V" `1 n% S
                child_2(j) = u_limit(j);
7 u+ V$ H; a+ q, m, B  Z$ ]            elseif child_2(j) < l_limit(j)) T6 w3 J& r4 t$ L* G
                child_2(j) = l_limit(j);8 e2 U6 ]! h/ T6 c
            end
+ `) Y/ m) y3 b        end
/ r# z! u/ d5 a8 O. r        child_1(:,V + 1: M + V) = evaluate_objective(child_1, M, V);
7 A/ ~; M# q5 |* c        child_2(:,V + 1: M + V) = evaluate_objective(child_2, M, V);
% `" ?1 M! I9 A        was_crossover = 1;6 l- f7 H: ^; K$ B
        was_mutation = 0;9 y! L/ m! a8 H: {+ q, o8 v9 U% w+ o5 [
    % With 10 % probability perform mutation. Mutation is based on; \& K! F6 B. H) \5 \
    % polynomial mutation. , k4 y$ u* l9 d( U
    else
- y9 x1 N  ~" A) v, H+ n* Q        % Select at random the parent.
+ ^1 ]# [# `! ?. D        parent_3 = round(N*rand(1));
% z6 T- i. t& i3 Z" d        if parent_3 < 1
) |2 Z* w9 `0 q" c            parent_3 = 1;0 `* N, s, [1 i
        end
' r, c$ o3 I- Z+ s; V$ c  P; @0 q" X+ p        % Get the chromosome information for the randomnly selected parent.
& {7 {  }8 T$ @: B, b2 P/ [        child_3 = parent_chromosome(parent_3,:);/ D! ]( x6 S" N) T/ Z! u
        % Perform mutation on eact element of the selected parent.
: x0 l0 X( N" A% L7 a7 {. |        for j = 1 : V% X- i- X6 r# F+ {8 ~# G
           r(j) = rand(1);! `: i1 D0 S( ^& [9 y
           if r(j) < 0.5  w7 b$ D: x' Q* D$ n
               delta(j) = (2*r(j))^(1/(mum+1)) - 1;
/ j0 R1 K" a3 l6 m9 A5 A           else
1 z- q2 R6 a5 V8 A               delta(j) = 1 - (2*(1 - r(j)))^(1/(mum+1));
8 D" X$ M: z8 V" V7 d           end  V& y+ P. m! @
           % Generate the corresponding child element.1 y$ P3 r& D& B: O, x6 r
           child_3(j) = child_3(j) + delta(j);
( z! K& Q  s: a7 X- J           % Make sure that the generated element is within the decision
' t; y$ g4 r9 {4 {/ k           % space.
* ?! [; [; }6 n/ D2 F           if child_3(j) > u_limit(j)
  H+ @0 g8 Z2 v               child_3(j) = u_limit(j);
+ v+ u5 I( e6 [" m0 r6 W           elseif child_3(j) < l_limit(j)5 q0 `8 D+ ]( R4 ^$ L
               child_3(j) = l_limit(j);
/ I4 g3 I* w% n) I           end
0 ?, D& ~% a& \0 \        end
! T( e( a* W3 {, U9 B        child_3(:,V + 1: M + V) = evaluate_objective(child_3, M, V);
; c( a& h# _" A; _+ b5 H( w" v  j        % Set the mutation flag
0 I8 ~7 Q4 t# Z. w. v8 D& M+ T        was_mutation = 1;
8 N  N# D1 l2 J/ l        was_crossover = 0;6 l2 d; i% W/ q0 ~1 I
    end0 a  s, {- Y+ K7 m
    if was_crossover! j! f+ R! i) ]7 _/ r
        child(p,:) = child_1;! [" f3 C/ W2 v3 s9 C0 r7 `
        child(p+1,:) = child_2;
6 |4 ?8 s; f* E! {: ?        was_cossover = 0;
2 f6 V; o! J! J9 F0 u/ P/ I. w        p = p + 2;
0 g0 _8 b. T6 k' K; ]% x- J    elseif was_mutation
; P! j  q4 W  ^- h$ b        child(p,:) = child_3(1,1 : M + V);
9 H# \- F8 m& w1 u        was_mutation = 0;3 k6 w2 S' M# W! j0 N
        p = p + 1;7 t( T) |7 ]' ?: z3 n. Q$ C+ c
    end( Q' D4 Q& a" E2 W. f
end
. |* F' V+ J, C1 S7 Uf = child;5 q& A' J4 [0 G, `/ r, |: v( }

" J6 y' _* S: f+ e$ f8 u7 r3 ]; d# N) X% m
⑥replace_chromosome.m" w8 P: n$ K% u7 \3 J

2 g# ^% R, ~) ufunction f  = replace_chromosome(intermediate_chromosome, M, V,pop)
: F0 j% k" S! I1 r/ j& ^8 ~0 ]7 [- P! i0 O6 n7 Y9 I0 Y, W  \
% Z& G: r7 t7 b# j  t
[N, m] = size(intermediate_chromosome);1 `8 A( v# J2 V4 u, ^' U

. H  U# J9 R' G% Get the index for the population sort based on the rank
" a* A& m# I7 v6 Q3 t  b[temp,index] = sort(intermediate_chromosome(:,M + V + 1));
+ A( x- o. C8 @$ Y# l  G  N3 m3 ?; [
" O; k2 r) r( {. _. zclear temp m
( T2 p. \. ^+ F# P! D) W- m' W; x" X* J; S+ b! Z7 e
% Now sort the individuals based on the index
* g6 \  a; A$ w# ~8 F7 R1 zfor i = 1 : N  M' ~$ w; s2 e
    sorted_chromosome(i,:) = intermediate_chromosome(index(i),:);1 u) D% G- n4 u! i
end
1 i! L0 [7 r- T6 f, @2 b
5 w2 B5 E/ v( `/ Y( D& G. \% Find the maximum rank in the current population! n! P2 h8 T& y
max_rank = max(intermediate_chromosome(:,M + V + 1));1 t) C. u$ Z+ h4 Z# b, m7 W

+ z" P  w/ i$ F, u. k8 a% Start adding each front based on rank and crowing distance until the2 k  I1 c% O7 C$ Y( i( }/ C
% whole population is filled.
7 ?% U) v+ P; x" K( Bprevious_index = 0;
/ o9 |7 h& }) Zfor i = 1 : max_rank
: D3 E* u1 a- ^! w    % Get the index for current rank i.e the last the last element in the; B4 ?, ^" l  p( Z
    % sorted_chromosome with rank i. 5 b+ a/ O/ t- C7 D% |
    current_index = max(find(sorted_chromosome(:,M + V + 1) == i));: w' n% ?" f0 g4 \$ v- Z
    % Check to see if the population is filled if all the individuals with6 ], u7 |- d, r& J# e( a- O
    % rank i is added to the population.
# p5 z% S$ _2 _0 O& d    if current_index > pop
# H4 Q% j3 @8 y$ n2 Q        % If so then find the number of individuals with in with current
% o+ @& R6 m. W! A2 m% A+ d6 }        % rank i.3 c0 A' i9 a$ s6 W5 z8 j
        remaining = pop - previous_index;5 d+ r3 k* n2 ~" P" b
        % Get information about the individuals in the current rank i.5 M1 q7 a& M8 ^  N6 a" |. ]
        temp_pop = ...: _5 M4 O7 n9 Z0 @
            sorted_chromosome(previous_index + 1 : current_index, :);. r; f+ d8 K/ {& D  o' [' X% m
        % Sort the individuals with rank i in the descending order based on
8 R( n: h; y/ W9 f5 p        % the crowding distance.# o" P6 A9 p1 p0 S* [3 e* O8 q' v
        [temp_sort,temp_sort_index] = ...# l! o2 B* L! g2 e+ X( ~; z
            sort(temp_pop(:, M + V + 2),'descend');8 X, Y' q5 L* o/ g/ k! d% Q6 J1 R, p
        % Start filling individuals into the population in descending order
% A! H$ _' ~" p+ S        % until the population is filled.! p) K' z- T; \4 l
        for j = 1 : remaining
- K7 J$ N* X0 T5 R) T            f(previous_index + j,:) = temp_pop(temp_sort_index(j),:);
$ {) _; N& M/ l: z% j/ T        end" L! j/ V3 S, q- D
        return;" u! r" r% E" y/ H9 \
    elseif current_index < pop
' i6 C/ n2 d2 Q& n        % Add all the individuals with rank i into the population.3 F( G' E& T0 C* K) K3 b! l
        f(previous_index + 1 : current_index, :) = ...
1 e. P* b: U6 ]1 ?& ]            sorted_chromosome(previous_index + 1 : current_index, :);' A* d! \* i# i7 A
    else
" y4 }" ]# U$ ^1 Z6 i0 c0 l9 U        % Add all the individuals with rank i into the population.
& H" M" b5 S, Z6 ~  q- p  X        f(previous_index + 1 : current_index, :) = ...
: f+ x) ]- C! u& B5 |4 e+ G1 c& T            sorted_chromosome(previous_index + 1 : current_index, :);/ |6 v' t) H5 v
        return;% ~  G& M' t! c/ B/ A/ O3 r
    end5 r, D& [$ {' T$ d4 Y
    % Get the index for the last added individual.
% [+ z; f# O+ v. h7 S    previous_index = current_index;
) v# x: [3 m0 ]! z, |5 Send' n: W' S! T/ J* H
: ^& z7 V; R3 ?  H% [

$ ~# o. o1 b; j  \5 p⑦自定义评价函数(我选用的ZDT1函数)1 \* D; K5 O! D
# ]- O+ w, @; e$ y: Z
function f = evaluate_objective(x, M, V)
7 \; f6 i. d9 N0 F. o( yf = [];9 c4 Q( y9 \1 j8 [% ~2 x, j+ Y
f(1) = x(1);
0 c0 m8 Y. ?( c3 }8 C; j; d8 O' Lg = 1;. w4 Z0 M* ~2 H$ y  w# |7 i. q9 ~
sum = 0;- u3 Z4 Y4 S; A0 ]; ?
for i = 1:V
* ]0 g4 n- H' r, g    sum = sum + x(i);
2 Q; r/ u1 }  e. e$ X1 I, }- Jend
3 U, q3 z& |5 e2 h0 Y+ \sum = sum + 9*(sum / (V-1));
8 f2 u2 u1 J+ f/ Pg = g + sum;
" Q( t$ q* A) g( if(2) = g * (1 - sqrt(x(1) / g));
$ x6 Y, ^4 A& m, ?% Q0 I1 t) vend
  l- Q5 }( Z+ ]! g& V# ~% B( a9 l# w7 ^1 k5 I0 r

3 f0 [8 o- }- a500个种群运行500代的结果: + E/ b. X/ T* v7 X" E7 c

& u0 D6 u$ b; z+ ~2 q' X4 T% z0 S8 u, A+ t  |

' \4 Q8 J- X, R1 D' l: A2 s
" c# S! r/ p- W1 m
* {! o* C, A& |7 {4 F* C# C( ]& d: q! {

该用户从未签到

2#
发表于 2020-5-20 13:09 | 只看该作者
NSGA2算法MATLAB
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-11-24 04:10 , Processed in 0.171875 second(s), 27 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表