|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
序列 x(n)的奇偶分解的公式为:+ v! Q6 F6 ~& z- I
' H3 l% u7 V) y( Y2 s% O
& V4 O# w8 C( v$ L, f
, \, Y& r. V+ _2 u1 e& w
5 ^8 C" y- U: ~* I, U. W( f/ w
' A2 l/ L8 D' A8 @ k2 P编写一个序列 x(n) 的奇偶分解式 xe(n) 和 xo(n),需要考虑的问题是序列长度,下标的变化。
7 z1 O& r8 S W/ |' `1 W0 P
& s o- c, {' N* @6 o1 U1 j这里必须做个声明,下面的程序中用到了前几篇博客中的几个函数,这里给贴出来:
& N8 W( ~) d x3 ]" {& W( l/ [# h( E: j# }/ `; ^
信号相加:1 n1 g7 i W; `$ F. h8 M
: `; s0 o# n# w( ^$ Lfunction [y,n] = sigadd(x1,n1,x2,n2): z8 @+ F8 N- o% z0 u2 u
% implements y(n) = x1(n) + x2(n)+ ^0 @' c$ i" U
% [y,n] = sigadd(x1,n1,x2,n2)
. V! z: R% k, w%____________________________________
7 m3 v9 W i, k: | t% y = sum sequence over n, which includes n1 and n28 T4 r% E; r9 X8 o- t& o, I
% x1 = first sequence over n1
* @5 U$ G4 l1 I* u& P% x2 = second sequence over n2( n2 can be different from n1)
" W$ s+ C+ {3 k0 }) B# v8 b%
9 z: G/ r2 o' M& \" Mn = min( min(n1), min(n2) ):max( max(n1), max(n2) ); %duration of y(n)5 d& o$ O* B3 k: f5 S
y1 = zeros(1,length(n)); y2 = y1; %initialization
. o3 n$ t& U/ y5 B' [5 Fy1( find( ( n >= min(n1) )&( n <= max(n1) ) == 1 ) ) = x1; %x1 with duration of y16 V% R. @/ t* a! o
y2( find( ( n >= min(n2) )&( n <= max(n2) ) == 1 ) ) = x2; %x2 with duration of y2, f% X3 j+ V; V$ y
y = y1 + y2;( Y ^- Z8 p$ i& C
; D8 a/ J1 q! _, ]9 I. o3 G. p
3 |6 x6 X: }" S6 U; ^* G3 k& j+ g信号移位:6 u: i- E/ ^# y% a& \. y9 Y* Z* F
. C9 C* F; a# t. b7 C6 V0 K0 f; zfunction [y,n] = sigshift(x,m,k)
: P$ o/ h l8 @+ Z& V" k%implements y(n) = x(n - k)
$ q7 x/ P: _/ o; ]6 z# v%_________________________0 l# }6 u* w* Q+ z
%[y,n] = sigshift(x,m,k)8 V6 k( k% z9 u0 F
%) m8 s! Q# E D% _! J) H4 `& y9 c
n = m+k;# g; V6 I5 Y0 ?$ S
y = x;
6 A% M3 ~( Y9 ]4 E! N1 _
2 \# w5 P: | E% y0 t2 [3 s% }5 ^! V. k6 L) y
单位阶跃序列:
8 }5 v& k' G* b! F. H( i" ^) u/ M; e5 M# V& O
function [x,n]=stepseq(n0,n1,n2);
, b% a( y! G+ k% Z; a1 x% generate x(n) = u(n - n0); n1 <= n <= n2: ~0 A9 R' l$ K( H8 s) i1 K7 ^
%_____________________________________________( s% g g1 E4 s5 M5 M, Q
%[x,n] = stepseq(n0, n1, n2);
8 M1 S2 r7 N7 C# K6 z* m%) p; Q& D5 \( U
n = [n1:n2];* y4 f0 H; T4 N# k: d, z
x = [(n-n0) >= 0];
9 Z2 Q- a8 n4 M( ?! g8 }) j7 i; D, j) V
; O6 g: T! U6 Y# G6 R" X2 m0 W
下面给出函数程序:
( D3 V0 ?) S1 `; L$ J. g7 q4 d( ~) ?: l. R+ N
function [xe, xo, m] = evenodd(x, n)5 h5 |. Z: j1 ~: t6 M
% Real signal decomposition into even and odd parts
0 B# A3 U/ Z. [' N%__________________________________________________2 R# Y9 y# ]3 @' r- O
%[xe, xo, m] = evenodd(x, n)
! f" S6 Y0 X1 u0 {%
$ A; `' i A6 }7 o, C( uif any( imag(x) )
+ a2 L+ b! {8 Z! e) L% D, c3 Y( f1 n. Y# R error('x is not a real sequence!');2 ^ l( h7 u! P% F
end7 \/ {0 R, I) \$ F5 P. q9 p% E# Q
5 H: H' y) r4 a! [9 f6 F% Ensure m of xe and xo
, V. C% q$ ]8 b4 cm = - fliplr(n);
/ k6 w$ \/ p7 p+ T2 q) }$ fm1 = min([m,n]);$ q! w% H# O+ ?& u. s
m2 = max([m,n]);' g$ Y5 N/ x6 o u! X
m = m1:m2;
( V* n6 l% G2 V1 s7 h( R# _: o: D: p/ p* N0 y; s
% Ensure x over m |# t2 r8 o7 w# g% h- ~
nm = n(1) - m(1);
' `/ [+ N5 j* L4 F5 vn1 = 1:length(n);
! S ]5 v4 t' F* a9 k! sx1 = zeros(1,length(m)); % initialization
3 H* R0 {! X2 Q2 u# Wx1(nm + n1) = x;
o% u& B; N4 Y$ d0 j8 \, \x = x1; % new x which enlarge index n+ \8 z7 ^8 J" A0 Y
. k) q6 U, o, l9 N( i0 }
% xe and xo1 g1 ~3 p6 L' ?
xe = 0.5*(x + fliplr(x));7 w" [$ H2 V+ z' |
xo = 0.5*(x - fliplr(x));5 } H2 V4 A* I( T
' |& @* L, R) A
" v2 t, q# ^7 a2 d% B序列和及其位置分别装入 x 和 n 数组。首先确认是否已知序列是实序列并在m数组中确定偶部和奇部分量的位置,最后将所得奇偶分量存入xe和xo数组中。: c* D* c) \8 ~) L2 ]' j
5 N9 }7 j8 d) I$ n$ P+ i下面以一个实例来验证上述函数:) b* X! x; K% O- _+ H" `. T) G9 v
( t$ h& b2 k" C" I
P2 ^0 x/ ~9 \, i: _; C1 ~
/ K0 D* N2 b( F$ u g' \7 h g将x(n)分解为奇偶分量。 L7 ~( U, G, K
( Z! ?1 |2 i4 |/ {1 \
clc4 m3 y- [" ~7 T k6 }4 v- J% ~. a
clear0 |% N P0 u U8 z# l$ E5 L8 M
close all5 d8 f1 k) E, a3 K" k
q L) ^! N% O$ V' x9 ?; j" m
n = 0:10;
" v& Y a7 z# a* g3 p* Ux = stepseq(0,0,10) - stepseq(10,0,10);
5 t e7 T( U% J: S& h! v9 V" Y[xe, xo, m] = evenodd(x,n);) t. Q' q! ^8 N, I
( p1 i4 C+ x) M% vsubplot(2,2,1);
+ T5 v, j: |0 r5 A& b5 astem(n,x,'filled');" I/ B$ A7 b9 F- _) n' s1 X4 W: E
title('Rectangular pulse');, p5 ?1 `9 D$ F% `* c$ L
xlabel('n');ylabel('x(n)');
% K8 S, z- o) S. z0 Daxis([-10,10,0,1.2]);
: D) [! v G8 O, j9 P% s+ u% l, }) K2 \
subplot(2,2,2);
$ g& r' t+ @' b- _& [6 Vstem(m,xe,'filled');
' u0 h% s' P! o# O' T# `title('Even part');
& Y* F9 S0 G) K" K- vxlabel('n');ylabel('xe(n)');
3 M/ q3 K, l, Y8 s. g: R( n3 ?: Paxis([-10,10,0,1.2]);9 [7 u3 t+ X7 q
a) Z5 f9 d O( w& U0 C
subplot(2,2,4);( c) g8 v" r l) N1 n
stem(m,xo,'filled');1 G- i# A- ]$ t* {
title('Odd part');
( k" v& }5 s: l8 G8 }5 f) X S oxlabel('n');ylabel('xo(n)');
5 n7 w% M' u0 _: S9 ^axis([-10,10,-0.6,0.6]);( B% E$ u1 J4 {2 }$ i" [
" d4 M {5 o$ K1 i
8 |5 F" k4 v* B. v3 F3 Y- j/ m
; [- A9 Q& ]; r事实上,这篇博文到这里已经结束了,那我还想看看序列x(n)= u(n) - u(n-10)的合成过程:
2 v/ V& Q2 K6 [7 m3 t8 l, f0 m, O# R+ z8 S" g2 a
clc
; I/ _ V& @# X9 @' Yclear* f" L) c7 Z" E5 s. e0 \! y6 e( r; g
close all& R% G8 }- w; d& j$ O3 P
) H( L0 t9 ?( C, t3 c
[u1,n1] = stepseq(0,0,10);- h4 @1 M+ E$ h% `4 C: }1 l
% N8 N- y% i z" ^3 q
subplot(3,1,1)" S) ~! k) D1 N
stem(n1,u1,'filled');5 Y$ h2 u2 D/ Y& J6 [1 J7 ~1 }
title('u(n)');
: |0 I. p$ X4 Q9 [ylabel('u(n)');xlabel('n');
" ^; w% D$ a) g1 Iaxis([-10,10,0,1.2]);
) c: S% \- @5 @' m& w, T& ?9 G8 E1 D$ J' {6 p& ?5 M
[u2,n2] = sigshift(u1,n1,10);3 r0 x! h9 [+ A: i+ l. l
subplot(3,1,2)$ V) D3 T" o5 m% o0 j, l
stem(n2,u2,'filled');1 V- h( I' y o- B2 q8 J9 y; x7 h
title('u(n-10)')- C) d5 |( z* \
xlabel('n');ylabel('u(n - 10)');% A7 `5 V! e' u- t) I% u
axis([0,20,0,1.2]);
- ^) ^ y" ]' t6 J; ~
9 z2 T! M. }2 i( c' p7 R[x,n] = sigadd(u1,n1,-u2,n2);
' ^) z$ z) ]4 k* x, n
2 M# t O0 ~4 Asubplot(3,1,3)
* u5 m: ]7 h# Ustem(n,x,'filled');/ w4 A4 b, l; k) C# L
title('Rectangular sequence');; r+ W! f/ Z- x* h2 G" D8 x: G& k
xlabel('n');ylabel('x(n)= u(n) - u(n -10)');# n. B6 ]& P5 z' @
axis([-10,10,0,1.2]);
- {4 H2 O" J* C0 L$ H/ u' B! c. N% ~' D: } ] u% @$ }
9 I0 e) ]9 c* n2 d8 d4 k
% t: i: h$ o5 {: h7 B4 V2 v, [% B, O1 u% u- t1 _
|
|