|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
+ D# f8 e B8 I函数参数 n:贝塞尔阶数 k:要求零点的个数 kind:第几类贝塞尔函数
# s: M h) V# o& O8 h. N' j! J9 W: ^" H& l: O: V! N7 i
function x=besselzero(n,k,kind)
3 S7 p- n& N! q# M%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @, J6 l3 O: ?4 k
%# a- J% t1 t/ m% e& u8 P$ z0 x( F
% besselzero.m4 ^& A" W7 L8 |
%
O; x4 x ?/ U# a* H d8 D% Find first k positive zeros of the Bessel function J(n,x) or Y(n,x)
3 ]; o% x6 a9 M% E' M- E% using Halley's method." M/ o8 o+ h. @; x2 f" c
%
' V: Z4 n9 X' I) b0 c/ N% Written by: Greg von Winckel - 01/25/050 N: h! y) ?5 z9 ^" M7 Z* E8 O2 x
% Contact: gregvw(at)chtm(dot)unm(dot)edu% w& a2 H. Z8 k+ E# o+ H
%
5 }" Q2 [$ k9 q9 @$ m' f4 w; u `%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%# w7 F, T9 \9 T6 C+ J; K6 m/ [
k3=3*k;. q$ D1 ]9 e+ T# @
x=zeros(k3,1);0 ~& l, J/ {0 b# j" X" u' Z
for j=1:k3: O1 R* }$ s: A" R
6 H3 \' v7 T3 r- V6 R7 w" Z
% Initial guess of zeros# ~8 p' ]; `) L7 M* W0 E
x0=1+sqrt(2)+(j-1)*pi+n+n^0.4;
8 v- y1 h& u, X! ]) t
. t4 `" Q5 h( d6 a) D % Do Halley's method
0 s# W1 ~. @: o# e/ i x(j)=findzero(n,x0,kind);
- j7 w# }8 E# b O( ]- e if x(j)==inf
7 Q" s7 F" q; ?) c error('Bad guess.');8 X/ p- m+ I4 T* ~! `, g; h" \% ]
end
0 q" \0 o2 X/ j$ Q9 h' ]1 D
3 { D8 D6 b- V# k* |end
6 T' u4 t( a5 f* D8 B+ l6 o4 t6 |x=sort(x);+ I2 u c$ u" ~. c% c# v
dx=[1;abs(diff(x))];
. Z) I Y3 A- Z) z! ?x=x(dx>1e-8);
4 C, N* Z8 @7 x$ s4 tx=x(1:k);1 Y" x! ~, e2 f4 E, m
function x=findzero(n,x0,kind)/ [3 n% F# y M
n1=n+1; n2=n*n;. W# {' i+ k5 X! D8 X' L7 [$ g, D
% Tolerance
. Y: Z: M' N) g# w9 v; btol=1e-12;
! {# `3 P0 p6 _2 O* V% Maximum number of times to iterate+ Q4 e' L# t% Z
MAXIT=100;
u! X2 j, u/ ~9 [5 t% Initial error( i. X0 W& ~- k
err=1;2 c, ^$ d6 H; i& o5 M
iter=0;
7 ^) G) Y) ?( w8 o: h+ i# J* k* C; fwhile abs(err)>tol & iter<MAXIT1 c* h- M; x8 V' D
1 l' I, m7 X+ ?3 I
switch kind
3 g3 o, \$ V3 r% P/ o2 K case 1
0 k$ z Q) y% D+ m a=besselj(n,x0);
2 x, s* W: X3 o& M4 v# y* h b=besselj(n1,x0); 2 ^$ p; [& d% t( G. ^, L
case 2
: _2 o/ Y( a- k @: \" f5 R: [ a=bessely(n,x0);0 J5 d9 |1 c" \4 ^
b=bessely(n1,x0);
4 ~' P! C7 V' z* w7 m end
' k8 g) B3 e- R9 K; T, E8 ] - ?2 T: d* l) b5 }8 [1 S
x02=x0*x0;
0 ^0 K2 D3 s) C1 ~, u
# l. O- \) a# q- a4 r! y3 ?# m) [8 ~ err=2*a*x0*(n*a-b*x0)/(2*b*b*x02-a*b*x0*(4*n+1)+(n*n1+x02)*a*a);
: P* m# X9 \5 d/ o1 f# ^ N0 x) f7 @% B' t; N3 }
x=x0-err;: ~7 A8 n5 h/ d0 l0 ~5 l
x0=x;
9 [& q2 ?* X! a+ M3 X0 E iter=iter+1;
2 V9 j5 `2 [& B- b6 L6 i$ b v . d8 I; m) O! `* E3 W$ y+ _( a
end
8 @% o6 K7 K/ B' H" Gif iter>MAXIT-13 \+ x& s. a* y' G, l% d' N; c. b
warning('Failed to converge to within tolerance. ',...
$ Y9 {! [( R/ m 'Try a different initial guess');
6 p" W3 W+ U) R1 r x=inf; % Q, w5 @ p( v, ]: Z$ V! S
end- v2 a& T* \4 r' s; I( a7 P; H
n. R9 P# \9 G# Z. y |
|