|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
本帖最后由 mytomorrow 于 2020-1-10 10:12 编辑
/ S( g1 i% |7 s( S& W) I- ?8 x! D! h i0 e* F9 M" c" Z8 B
7 [+ A: [- v2 _" B9 P/ z3 S! l; ]
pascal! L R6 c7 [" S# n# p
Pascal matrix
1 c% {! R+ c8 y0 @+ H: i* [8 F+ r J1 P; H
) `6 }/ f) Z: n& g
Syntax; h3 V7 j# e p9 n0 J/ A
* L6 `4 l" ?( o7 G. p- b# u
P = pascal(n)0 R; m+ [' H2 x# G' h9 k7 F" J9 x
2 z. W! R0 L1 D: u& A+ H+ T
P = pascal(n,1)
0 Q: W; \: C7 J2 P0 B! w l9 E
u; j' U! R: E" i% zP = pascal(n,2)! @% k0 P5 J+ z# M( |
* s; E0 R- c0 ]" S5 o. pP = pascal(___,classname)5 l! Q7 y& k4 z2 R3 v8 p7 a( |
: m! _5 e4 C( A% ~, \; k
+ P m1 w. V/ j2 g# r2 e5 j% }, P& h
Description4 l, ?! d, K" v5 t
5 h+ z- ?2 g! l$ j( x, j" u
P = pascal(n) returns a Pascal’s Matrix of order n. P is a symmetric positive definite matrix with integer entries taken from Pascal's triangle. The inverse of P has integer entries.
" {7 w4 m/ @( p; [: a& V' W* Z/ G7 g; a7 s+ r* }! N
P = pascal(n)返回阶数为n的Pascal矩阵。 P是对称正定矩阵,其整数条目取自Pascal的三角形。 P的倒数具有整数条目。9 p$ D$ g' t. H
# H& D( g; y! m( aP = pascal(n,1) returns the lower triangular Cholesky factor (up to the signs of the columns) of the Pascal matrix. P is involutary, that is, it is its own inverse.
! t3 }1 D+ t5 V, g) g+ K1 x* a3 f# R- o2 c. Q2 c5 K, v$ W
P = pascal(n,1)返回Pascal矩阵的下三角Cholesky因子(直到列的符号)。 P是非自愿的,也就是说,它是它自己的逆。
' E1 ?) {$ R5 V! s1 C$ V4 m+ T
" ~9 d- R" S+ _+ pP = pascal(n,2) returns a transposed and permuted version of pascal(n,1). In this case, P is a cube root of the identity matrix.
5 M5 z% H2 s! t9 S" G
# [+ o0 S) u% I6 \1 \P = pascal(n,2)返回pascal(n,1)的转置和置换版本。 在这种情况下,P是单位矩阵的立方根。/ b- W9 ?5 V2 O/ ^* l4 y0 K' m4 Q- J" @
9 n K3 M6 k5 z7 ]3 U: R4 uP = pascal(___,classname) returns a matrix of class classname using any of the input argument combinations in previous syntaxes. classname can be 'single' or 'double'.; C3 {4 @) H+ G. V6 e. U3 k
2 `, H0 v$ U% JP = pascal(___,classname)使用先前语法中的任何输入参数组合返回类classname的矩阵。 classname可以是'single'或'double'。* f% r% y& l% U6 Y* F
8 T: n4 V1 d2 {" Z8 e& M9 d$ q# M+ {: ^0 F
Matrix from Pascal's Triangle3 r( l I1 `/ Q& a
- a, i# f( O+ i7 _3 x
- F ^' { G2 C7 ^Compute the fourth-order Pascal matrix.
4 P6 D) @' O" Q$ L& Y4 D8 Z
& G# B4 O" v3 C+ |& j+ QA = pascal(4)$ m/ q+ D1 n$ f, s. G
# Q+ s7 O; W! R9 J/ D: y+ i3 C& KA = 4×4% {6 N( I$ N) A/ Y. i: `
9 \# U" _1 H6 t+ a" B6 j$ I: m% l 1 1 1 1& ~3 S. V. H# r1 O9 A/ k& r0 y
1 2 3 4
6 x% Z) C4 o# k) F2 D' B( v! V- C: _ 1 3 6 10
! ?- Y- I3 n- Y y, f2 z1 | 1 4 10 20
7 D5 ?/ m9 ]2 u8 _- v% ]) \3 U8 |' l6 z4 ^% x$ m
Compute the lower triangular Cholesky factor of the third-order Pascal matrix, and verify it is involutory.
3 s: H( K6 {+ R( }7 U; z: X. B% k# N3 u* i6 L
A = pascal(3,1)
* h0 S+ _+ ?) T1 n7 w+ Q+ r2 l* |. `9 @$ C
9 V1 z: ?2 j# VA = 3×3
1 j6 X, `$ e' j3 O& c7 j
& e, R: X4 S% {/ }! W 1 0 0
3 F+ o' X. Q9 P/ m5 I 1 -1 0* c9 `+ y& X1 X! V, u
1 -2 1, {# w" K$ B' }6 k
1 R6 o5 M5 x3 S
inv(A)
/ h0 ^: v) j2 s' J/ r% w9 B' C* ?: k/ q( s
ans = 3×3
7 y* c4 v# a- g9 E; n$ K" t
% y$ H" t9 H) j( N, ? 1 0 0
3 ~' x& G4 \$ c1 T8 b0 f 1 -1 02 L7 \8 j+ x% Q3 ]
1 -2 1( P. ~& p4 W9 V% b6 z' t3 T
: Z5 \, K1 }2 J9 k帕斯卡的矩阵; f9 {! n/ _5 ?2 q4 i4 z
帕斯卡的三角形是由数字行组成的三角形。 第一行具有条目1.每个后续行通过添加前一行的相邻条目而形成,替换为0,其中不存在相邻条目。 pascal函数通过选择与指定矩阵维度相对应的Pascal三角形部分来形成Pascal矩阵,如图所示。 概述的矩阵对应于MATLAB®命令pascal(4)。9 Y! z: | c. g5 |
6 ]6 T; c, U( K7 {* ^
/ \9 |0 a) F; q# V r* F, [2 ?$ H( C9 k# z7 z2 S
根据上述描述,我们猜测,pascal(3)为:6 q6 W& b- t" |+ _1 R n
* h% ?* c Z2 W9 j, A# B+ ^1 1 1; G3 A8 ^% |2 {4 j P8 j+ ~
& S# w0 d" s' U; c+ _8 F5 b) T/ z
1 2 34 e3 t+ x& P2 C1 \
6 ~9 h$ K7 K8 r+ t$ x- {1 3 6: O& E3 U* u4 D! G8 k
- W7 z( ]# l$ h5 o) e+ x6 e验证下:$ k* F9 y* I5 g& V- b H0 u+ f B
4 i% h/ U0 o) O7 k, N, ~. e; m6 j>> pascal(3)7 _9 p' Y0 b& X
: Q3 a% U p# T+ z- ?ans =
9 H- m+ m8 a, R. |5 r& `8 v) t5 I
8 c' w' a* j! C3 m& X& c 1 1 1
$ ?+ p+ p, F' |$ Q" ^8 K 1 2 38 q0 T" W7 S) a' F5 B
1 3 6" n" ^& }2 }4 n, E6 Y
4 M( j& X, Y4 b1 o确实如此!
* p2 t5 B2 O5 u
( Z3 n5 k5 Q% Z& N6 ~, O
1 b8 | u( V7 L% v* h4 ]4 | |
|