|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
0 z) d8 t$ f+ H4 `" K& G8 ^8 T$ }norm* R: \8 x. D+ r
Vector and matrix norms
& K% g: k0 K3 }6 X. |4 z5 G3 L0 X
Syntax
( e( O8 h8 E8 _
) J3 \$ t, P. ~( k6 ^2 Qn = norm(v)
$ s ^/ p$ I3 Z" q6 K
, }; p0 c& W! m/ u. f" S: M2 g) ^6 gn = norm(v,p)5 g. U! D9 Q: j
0 a w2 Z2 Z: [
n = norm(X)6 h9 Q2 m6 w) G6 j2 u) O
9 H. Y+ E9 _, m( ~5 I4 I vn = norm(X,p)/ Q* U( C' j8 {# g- o- H
4 o2 W \- g$ f: l8 o0 D1 G) m/ _
n = norm(X,'fro')2 O4 W, R" G* |( ?+ j* e/ {
) o! ~9 ~+ X# n( K9 z. ~
Description
0 Q+ F8 i3 f% T4 H3 Q- \7 `( { I" I1 j! E# u! t
n = norm(v)返回向量v的欧几里德范数。该范数也称为2范数,向量幅度或欧几里德长度。4 X( I. r$ O& H |
5 U/ L5 h: `" h/ L8 m8 ^. L
n = norm(v,p)返回广义向量p范数。! j0 Q; K9 V% g+ h4 a7 y9 W
% X% J) N' X( x7 h" U! C. S
n = norm(X)返回矩阵X的2范数或最大奇异值,其近似为max(svd(X))。- g- W p4 w$ z6 t
) P8 h0 D5 O y% y4 R
n = norm(X,p)返回矩阵X的p范数,其中p为1,2或Inf:8 a \+ H( I. h; {1 u
0 A/ ?4 ?: f' Z- f' y- 如果p = 1,则n是矩阵的最大绝对列和。
- 如果p = 2,则n近似为max(svd(X))。 这相当于norm(X)。
- 如果p = Inf,那么n是矩阵的最大绝对行和。
0 w' F% H6 R! f% i. B H9 \3 z
. ^# H* J# c7 @. en = norm(X,'fro')返回矩阵X的Frobenius范数。4 i" Q. h" _+ v+ T
2 o& n" _# r8 w/ w
有关范数的基础知识,见上篇文章:MATLAB必备的范数的基础知识
) {; o3 d% j$ Y8 O% G
) v# ]3 N/ w- \下面举例说明:' _! F [& v7 G: J5 ?3 ^) n
9 N% v, M5 Q+ k% h1 S+ E9 YVector Magnitude(向量幅度). b- ] K( p& I! D9 g, G2 x! l
1 z7 }9 t- v2 y- ]2 x
- %Create a vector and calculate the magnitude.
- v = [1 -2 3];
- n = norm(v)
- % n = 3.7417( v% E" _+ F! B1 g' V6 w
8 t$ h! \6 }' u, A0 \& o5 S
" ]) i- Y, Q4 V1-Norm of Vector) a) `* a0 M. x8 l
+ E$ m0 a1 _) O- J
- clc
- clear
- close all
- % Calculate the 1-norm of a vector, which is the sum of the element magnitudes.
- X = [-2 3 -1];
- n = norm(X,1)
- % n = 67 z1 J: r" F; b& `: }2 n$ s$ a
8 l8 o7 F: }4 R7 K9 U6 aEuclidean Distance Between Two Points
- B" Q5 `' R. t8 L4 C
" f/ ~' v5 `& j6 a- clc
- clear
- close all
- % Calculate the distance between two points as the norm of the difference between the vector elements.
- %
- % Create two vectors representing the (x,y) coordinates for two points on the Euclidean plane.
- a = [0 3];
- b = [-2 1];
- % Use norm to calculate the distance between the points.
- d = norm(b-a)
) ]2 E( Z6 b/ }! } W3 i2 K 1 P( `6 f+ W' u r! Q
d =3 j# P4 H* t3 \! U3 l5 ~
6 m* J: _$ O0 T8 ] 2.8284
+ C9 C0 l9 z7 s# W4 k, T0 c& T7 x& t% P: X7 O6 u
几何上,两点之间的距离:
1 U) [, }) i5 h" n8 j; S
0 R2 R" J+ Y1 n) R
% O' W) M* ]5 ]2 n, @9 m% |& L
) k4 T" {- C2 R4 y- g' I6 v
( G& b% T" W1 a2-Norm of Matrix
4 j8 G8 i# M9 S0 }1 O [
: r& [' d! e; `: S6 a0 v* J- clc
- clear
- close all
- % Calculate the 2-norm of a matrix, which is the largest singular value.
- X = [2 0 1;-1 1 0;-3 3 0];
- n = norm(X)
- % n = 4.7234
, w8 {, A6 N$ @& e
# T0 i2 R9 \* H+ K6 q1 j+ wFrobenius Norm of Sparse Matrix
" k5 i! z1 F! r$ p, I0 L0 j& I3 c0 |7 z. y
: B, Q5 s* z- f) T, E0 ^/ p
- clc
- clear
- close all
- % 使用'fro'计算稀疏矩阵的Frobenius范数,该范数计算列向量的2范数S(:)。
- S = sparse(1:25,1:25,1);
- n = norm(S,'fro')
- % n = 5! s+ G1 g( C; s% R6 S+ _/ W8 [
! j! _2 S) A+ u% O! K8 O/ w5 y
. N$ s7 o5 F. A; y- F3 ? e
) @: Z8 ~9 e4 ` |
|