EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
6 S" I, d7 b: j# o) A g8 W案例分析 Inverse Transform of Vector Padded Inverse Transform of Matrix Conjugate Symmetric Vector
5 |6 X: m/ Q5 x$ u3 k8 @) u, q
$ u8 x% P# c; N, d) f案例分析
1 h4 o& ], f) y0 G, P c6 [Inverse Transform of Vector8 {: D, p0 W# f: z7 m0 |
0 d8 o+ f$ I9 v- % The Fourier transform and its inverse convert between data sampled in time and space and data sampled in frequency.
- %
- % Create a vector and compute its Fourier transform.
- X = [1 2 3 4 5];
- Y = fft(X)
- % Y = 1×5 complex
- %
- % 15.0000 + 0.0000i -2.5000 + 3.4410i -2.5000 + 0.8123i -2.5000 - 0.8123i -2.5000 - 3.4410i ⋯
- %
- % Compute the inverse transform of Y, which is the same as the original vector X.
- ifft(Y)
- % ans = 1×5
- %
- % 1 2 3 4 5, H) M, _2 k6 R2 v- W/ I; J
7 e8 n7 ^9 |1 [# }8 ]+ p7 m* F! |
! ?' D& c; E2 K2 J
/ p- d5 q" O z$ X: e. c! M- P, k! j2 h& O& f5 U
结果如下:7 |7 m; E+ \' @5 D: _; t+ |7 f2 g% C
( A% U7 \& N1 y: m% b3 M
ifft_vector% b$ ~, P P/ w* m7 }$ C9 b. Q/ G
8 `% A4 P8 |$ \! {% _Y =3 g% G: f/ T& ^' S
/ `# }. H$ n& i 1 至 4 列
v7 @; n0 X2 Z9 E8 X, B" v% U) F: Z7 N1 Y
15.0000 + 0.0000i -2.5000 + 3.4410i -2.5000 + 0.8123i -2.5000 - 0.8123i; c6 E4 c+ A3 d
* j& [, N6 D4 q6 A U+ e8 y
5 列- N0 T! i# O5 D/ a# `# U- R
L5 }' S! \: W8 Z2 d
-2.5000 - 3.4410i5 X& p }. b, Q( o, ^! u3 l
! l: D: d( B7 c9 y) z- t4 m
ans =
8 E& V- C* I6 K& g; d
- I$ @* |1 E8 _- g 1 2 3 4 5
4 T9 j1 X6 K7 s. F. G
1 E7 `4 O* A+ d/ }9 D" R
0 Z7 Z# k; B: ^3 wPadded Inverse Transform of Matrix
& H4 ~9 X5 \/ S5 T5 p% z- clc
- clear
- close all
- % The ifft function allows you to control the size of the transform.
- %
- % Create a random 3-by-5 matrix and compute the 8-point inverse Fourier transform of each row.
- % Each row of the result has length 8.
- Y = rand(3,5)
- n = 8;
- X = ifft(Y,n,2)
- size(X)
6 n; k+ [* G" E( {( O* Z+ \
5 t9 M& J* I' r" \1 {5 q& \7 G9 s1 K. x7 V1 g
1 s9 M2 w o3 e
/ S# ^3 G3 _9 h! Y* _) N
结果如下:
4 N. l7 i) b5 M( X' j$ w) W) ^% R0 h- ]3 |
Y =
- E0 M& \8 n/ q9 l* x' C( F5 P1 @) c, U4 d; `
0.8147 0.9134 0.2785 0.9649 0.9572; G' |3 p3 p. r! y: ~& d W* z8 U- h
0.9058 0.6324 0.5469 0.1576 0.4854) q0 m8 d3 V2 O8 w
0.1270 0.0975 0.9575 0.9706 0.8003
" D4 }, U6 a1 q8 P7 Z; m+ z" l
7 ^- b" @- q/ P) s4 N/ m0 f& cX =
3 F- \0 S, a6 X2 P6 W& e6 m# Z: ~4 [" i$ e/ c
1 至 4 列
# j- c' b% r! D) L% r; O) u7 G5 I) Q! }* P" Z- |- D
0.4911 + 0.0000i -0.0224 + 0.2008i 0.1867 - 0.0064i -0.0133 + 0.1312i7 {% E3 F: A* w% M$ j: K& |
0.3410 + 0.0000i 0.0945 + 0.1382i 0.1055 + 0.0593i 0.0106 + 0.0015i
) U" }( Z9 Y* z1 B' t 0.3691 + 0.0000i -0.1613 + 0.2141i -0.0038 - 0.1091i -0.0070 - 0.0253i0 h+ S3 l1 W+ m! w/ e' R
. e) G' X: `* N4 u
5 至 8 列
3 R* x# J+ U" t U* @6 @6 E; Z3 O
0.0215 + 0.0000i -0.0133 - 0.1312i 0.1867 + 0.0064i -0.0224 - 0.2008i+ f8 e. v) ^+ A- k. e: h) k
0.1435 + 0.0000i 0.0106 - 0.0015i 0.1055 - 0.0593i 0.0945 - 0.1382i9 h1 t! z0 s8 K' _
0.1021 + 0.0000i -0.0070 + 0.0253i -0.0038 + 0.1091i -0.1613 - 0.2141i. U3 F2 @! O6 H7 H
/ Z) u- J, a* f$ vans =
, X' B2 |5 _$ f ^- y, D7 h
1 M) R5 ]. z+ `4 J/ b( o 3 8" P+ N2 Q3 A4 ~7 H6 `
8 R3 f7 k5 h+ ]( u/ x
上面的程序是计算矩阵每一行的8点ifft,故结果是每一行的ifft有8个元素,而计算矩阵 Y 每一行的 ifft,关键语句为:5 T. q5 n# v6 V: U. s2 [: R- _) _
$ L& J/ I% b& D4 ]X = ifft(Y,n,2),里面的2,如果去掉2,则是对矩阵Y的每一列计算ifft,测试如下:
5 U1 }; `2 F. P1 V0 H7 Q
( i* Z) Q2 x( t+ V- O' M; T- clc
- clear
- close all
- % The ifft function allows you to control the size of the transform.
- %
- % Create a random 3-by-5 matrix and compute the 8-point inverse Fourier transform of each row.
- % Each row of the result has length 8.
- Y = rand(3,5)
- n = 8;
- X = ifft(Y,n)
- size(X) S* Z4 c) a- E& m" N
0 g- h* `; B; P) A4 T
# E7 E! K, X2 h. iY =& z" L4 q: I) n& n& _/ Y
o6 H: ~$ W0 y
0.1419 0.7922 0.0357 0.6787 0.3922
, L/ i3 _/ {* ]7 p5 S 0.4218 0.9595 0.8491 0.7577 0.6555
: L# ]" j1 A ]$ o 0.9157 0.6557 0.9340 0.7431 0.1712& w# S5 Q7 X& k+ U) p
V$ N8 Q6 f5 n( ]& y
X =
% S! N7 ?- z. Y, P- [$ S. V; E% Y! w. {1 @ |
1 至 4 列 V9 L; G1 k* E# Q+ S: d
9 A" C; T7 g [* } 0.1849 + 0.0000i 0.3009 + 0.0000i 0.2274 + 0.0000i 0.2725 + 0.0000i
7 s3 F5 b% B _* F$ Z 0.0550 + 0.1517i 0.1838 + 0.1668i 0.0795 + 0.1918i 0.1518 + 0.1599i
2 D; ^$ z' V; g, V( S e -0.0967 + 0.0527i 0.0171 + 0.1199i -0.1123 + 0.1061i -0.0080 + 0.0947i- ~- o8 Z. R% X. c# ]+ x% r
-0.0195 - 0.0772i 0.0142 + 0.0028i -0.0706 - 0.0417i 0.0179 - 0.0259i
% `3 M# k, h( M1 L0 t, h 0.0795 + 0.0000i 0.0611 + 0.0000i 0.0151 + 0.0000i 0.0830 + 0.0000i
: x' Z' |2 ^1 J -0.0195 + 0.0772i 0.0142 - 0.0028i -0.0706 + 0.0417i 0.0179 + 0.0259i% u5 \2 E4 I4 U' N8 Y
-0.0967 - 0.0527i 0.0171 - 0.1199i -0.1123 - 0.1061i -0.0080 - 0.0947i
( G4 W; Y) ]7 Q) j* R 0.0550 - 0.1517i 0.1838 - 0.1668i 0.0795 - 0.1918i 0.1518 - 0.1599i2 P0 |) t. R; g$ \$ D5 _, A! Q
+ x/ r- Z. S5 b! R# n/ b" I
5 列
% A8 u8 i. h' c4 @
% M3 T9 V. O2 a& ] 0.1524 + 0.0000i
+ E8 r, [, p& @# r! t6 c+ }; l 0.1070 + 0.0793i
+ }, ^' l# \' R5 l$ H+ h 0.0276 + 0.0819i2 P; Z+ r+ R. t% t2 s
-0.0089 + 0.0365i
/ _, V) u1 @. y! Q3 a. y7 r, Y -0.0115 + 0.0000i
; t. ]: I9 v8 o' v( R$ b -0.0089 - 0.0365i
+ ]1 d8 }6 F. q( g+ N# A) ?/ Z 0.0276 - 0.0819i6 |; `; V* ]* K" d7 |0 R
0.1070 - 0.0793i+ F1 b: f' m$ ]& V% P
( [% i& [$ H) _+ [ans =
3 j9 r. \( ^- `2 n9 x+ X$ [- D+ E1 A/ m! q9 {
8 50 O% b$ {+ U+ m D- H' J! l: v! p
8 Q7 _5 {, z3 {2 W( Z& w) a" I6 Y# v* ~+ Z
Conjugate Symmetric Vector
9 b2 ]1 p, i& A9 A: Q$ `; H7 b0 C$ @9 L' ?/ I5 i; T
For nearly conjugate symmetric vectors, you can compute the inverse Fourier transform faster by specifying the 'symmetric' option,
0 k& e7 E F3 ^6 `0 ]' jwhich also ensures that the output is real. Nearly conjugate symmetric data can arise when computations introduce round-off error.
. T2 e4 p1 J0 b5 q0 B( [
& Q% m& A" j# s6 m+ PCreate a vector Y that is nearly conjugate symmetric and compute its inverse Fourier transform.
! r% T% x' W/ Q6 H! _/ TThen, compute the inverse transform specifying the 'symmetric' option, which eliminates the nearly 0 imaginary parts.
3 Z0 h* t6 s E* f' m I4 S7 v
0 r# s) B* H' Z6 s对于近似共轭对称矢量,您可以通过指定“symmetric”选项来更快地计算逆傅里叶变换,这也确保了输出是真实的。 当计算引入舍入误差时,可能出现几乎共轭的对称数据。 p3 ~# K9 n- N
$ K( `7 ]( O d- G" F2 Y创建几乎共轭对称的向量Y并计算其逆傅里叶变换。然后,计算指定'对称'选项的逆变换,它消除了近0虚部。
& }+ V; `6 ]% ` G
P: ]. W/ X C- clc
- clear
- close all
- % For nearly conjugate symmetric vectors, you can compute the inverse Fourier transform faster by specifying the 'symmetric' option,
- % which also ensures that the output is real. Nearly conjugate symmetric data can arise when computations introduce round-off error.
- %
- % Create a vector Y that is nearly conjugate symmetric and compute its inverse Fourier transform.
- % Then, compute the inverse transform specifying the 'symmetric' option, which eliminates the nearly 0 imaginary parts.
- Y = [1 2:4+eps(4) 4:-1:2]
- % Y = 1×7
- %
- % 1.0000 2.0000 3.0000 4.0000 4.0000 3.0000 2.0000 ⋯
- X = ifft(Y)
- % X = 1×7 complex
- %
- % 2.7143 + 0.0000i -0.7213 + 0.0000i -0.0440 - 0.0000i -0.0919 + 0.0000i -0.0919 - 0.0000i -0.0440 + 0.0000i -0.7213 - 0.0000i ⋯
- Xsym = ifft(Y,'symmetric')
- % Xsym = 1×7
- %
- % 2.7143 -0.7213 -0.0440 -0.0919 -0.0919 -0.0440 -0.7213 ⋯% {% f b+ x2 F' `7 H1 S$ {2 N
$ }4 _) P1 d6 A& d+ [8 [, }
5 L# l, [1 Q5 W* A
; ], m. y$ Y) s4 m
$ Q+ a$ h6 C( k
结果如下:
( v( s4 \0 G% W z* d) Y
5 L7 }# ?4 v4 ?0 HY =
( L& W1 B% G+ p( m& S7 A3 C" s+ P
* Q- b9 t9 J6 j, o! ?% u1 w$ g 1.0000 2.0000 3.0000 4.0000 4.0000 3.0000 2.0000
9 I- K1 I: M" t5 y: R$ {8 o2 K; C
X =! n& H6 A& T$ M/ l) m" N
( o$ f& M1 }, x, j/ O2 S8 j |
1 至 4 列
; F7 p. l9 @0 ]+ M; A9 L# g# {8 z4 s7 @# O
2.7143 + 0.0000i -0.7213 + 0.0000i -0.0440 - 0.0000i -0.0919 + 0.0000i
" `/ @( m4 s7 M
- A0 |7 n6 [8 e( k! {3 ?- Z% T 5 至 7 列
! \; \# S$ ?7 ?! e6 s4 ~2 q Y% s1 V
-0.0919 - 0.0000i -0.0440 + 0.0000i -0.7213 - 0.0000i. ~: I9 W$ z4 l% v! i
% V. f8 w% T6 N# C0 p" f$ MXsym =
# |# f1 H' W: g$ ^. l
) C# e, ~/ J1 i 2.7143 -0.7213 -0.0440 -0.0919 -0.0919 -0.0440 -0.7213* w9 U' M4 j3 j8 q( ^, K/ x' o3 A* V
- o. E" L$ j8 W" p
9 _/ q7 x$ A* z% b& t! \& Z) k6 _
. F# ~( D! n1 J6 m- f7 G! P9 h0 U' u/ g
: Y# \. ~* }$ u' O
- L D1 G ]$ t2 g( n2 x0 O) t
! S# v8 @) O4 Q( V# g: x& Y. d
* `5 I0 N& W" P2 |$ d# }% K8 R( t. g
2 m U# C" _) e% r" F0 ? |