|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
1.电磁兼容导论英文版
" z/ `! M: D% ~《电磁兼容导论》是机械工业出版社2006年出版的图书,由保罗编著。本书全面系统地讲述电碰兼容(EMC)的基本原理及其应用。
0 y5 O: }4 p( ]- n7 j. P7 B本书全面系统地讲述电碰兼容(EMC)的基本原理及其应用,包括EMC概论、电子系统的EMC要求、电磁场理论、传输线、天线、天件的非理想性能、信号谱、辐射发射和敏感度、传导发射和传导敏感度、串扰、屏蔽、静电放电、的系统设计等内容。本书讲述深入浅出,配合典型例证,实用性强。可作为高等院校相关专业电磁容课程教材,也可供EMC设计开发人员参考。
7 Y! e& O7 V' _+ m; H3 r- e; t0 `: T
Contents
% Q/ b2 n7 H. v9 X4 QPreface xvii: ]! j+ I4 [' F
1 Introduction to Electromagnetic Compatibility (EMC) 1
9 z& M8 k1 h( [6 b1.1 Aspects of EMC 39 j2 E$ y& m- i2 b; \
1.2 History of EMC 10
+ I, P! `, ~% b7 \$ L1.3 Examples 12
# y9 |( g" B. |$ C, _$ \# T1.4 Electrical Dimensions and Waves 14+ I& o8 z$ g% J' u
1.5 Decibels and Common EMC Units 23
/ C( Z' O1 Q! {& h* I# \& W% O1.5.1 Power Loss in Cables 323 q6 `+ {6 J6 g1 r" ]5 r
1.5.2 Signal Source Specification 37+ q1 e1 }" Q& `- i: e6 L
Problems 43
9 |& C. _, e/ R- C$ P6 P9 sReferences 48
6 O4 S9 y) N4 O9 O: ^/ \8 z" z2 EMC Requirements for Electronic Systems 49/ a+ R- Y: {1 N
2.1 Governmental Requirements 50
0 K4 q3 k9 E5 e" p- D7 a. e' `2.1.1 Requirements for Commercial Products Marketed
" D- c" l+ Y3 y: |5 Uin the United States 50
# y+ a+ \/ w% y/ ?# v4 Z& N2.1.2 Requirements for Commercial Products Marketed
7 M1 S6 `! l, n, \outside the United States 55% _4 j# q7 p( C! w
2.1.3 Requirements for Military Products Marketed in the7 g) I9 c* G7 V, Z4 I# z* _
United States 605 \( {' D7 \# ]: ^
2.1.4 Measurement of Emissions for Verification of Compliance 62
- m0 P' s4 H' I& z8 }2.1.4.1 Radiated Emissions 64- P% p" u) y& b- t. L, |5 q3 Q
2.1.4.2 Conducted Emissions 67/ o9 u! |+ F' \7 u9 ~$ K; T
2.1.5 Typical Product Emissions 72
, x% G$ v9 p9 K a. t& y2.1.6 A Simple Example to Illustrate the Difficulty in Meeting# S: ]3 Z# a9 W' z, {% h* t$ h Q
the Regulatory Limits 78# [' ]) C6 J: @3 P" M- n6 _
vii, v0 L( W; S5 L* P$ F7 ]' L
2.2 Additional Product Requirements 79
# f, Q3 [. \ h" Y2.2.1 Radiated Susceptibility (Immunity) 81: C' R) {1 B8 M' `2 j) R
2.2.2 Conducted Susceptibility (Immunity) 81- n& ~0 s' m$ u; `$ R, \
2.2.3 Electrostatic Discharge (ESD) 81# }& }( Y5 z) m/ I2 x6 K
2.2.4 Requirements for Commercial Aircraft 828 _: l0 V( \4 T% j+ c! S$ n/ A
2.2.5 Requirements for Commercial Vehicles 82
% M w+ S( \6 D, M5 M) b/ ?1 q) }2.3 Design Constraints for Products 82
: K. U. N+ J+ o% H( |! E2.4 Advantages of EMC Design 84
1 D" G7 H! c- W& z/ K5 H8 dProblems 860 v" G3 \+ J" d+ |! P0 W8 b
References 89& o& H/ R8 h/ [0 W/ p7 B
3 Signal Spectra—the Relationship between the Time Domain and
4 B C% c6 U" \* C: fthe Frequency Domain 91
" `( ]: Q* i; Q/ T1 X3.1 Periodic Signals 91
) ]' @$ a* b$ @$ i3.1.1 The Fourier Series Representation of Periodic Signals 94! c( d+ L) a7 t
3.1.2 Response of Linear Systems to Periodic Input Signals 1044 _* B5 ]) `0 F, t, z7 W2 Y# Y" l
3.1.3 Important Computational Techniques 111
1 n4 G# ? @# ^5 u3.2 Spectra of Digital Waveforms 118
; ?0 z3 B3 a2 H9 h3.2.1 The Spectrum of Trapezoidal (Clock) Waveforms 118' \* l4 z6 H3 ] M9 n6 l# O
3.2.2 Spectral Bounds for Trapezoidal Waveforms 122
7 h T* t% X: I O, Y: v3 y( G3.2.2.1 Effect of Rise/Falltime on Spectral Content 123# r! r2 o: M( H) \" |- E- x
3.2.2.2 Bandwidth of Digital Waveforms 132
4 v# Z) `! O) I8 e# K/ \# R$ r% r) O3 h3.2.2.3 Effect of Repetition Rate and Duty Cycle 136% [: q8 I- T9 a, x' K
3.2.2.4 Effect of Ringing (Undershoot/Overshoot) 137" ?. O9 T- i1 {% `3 B5 j" a
3.2.3 Use of Spectral Bounds in Computing Bounds on the
" B3 M' ?7 W6 v. O# [Output Spectrum of a Linear System 140
, J7 L) |7 U n, {- _/ p3.3 Spectrum Analyzers 142$ V2 j! M# \' ]! B2 b! L
3.3.1 Basic Principles 142
" q0 h6 F. |( L, Y" V# E, ]6 y( H3.3.2 Peak versus Quasi-Peak versus Average 146" d+ h1 R. }3 Y* B- ~- h! A
7 I# V$ C: e A& @# ?8 ]% U, ]
3.4 Representation of Nonperiodic Waveforms 148! H k" Q+ Q. h
3.4.1 The Fourier Transform 1487 b0 T: Y; \: l, d7 N c7 w
3.4.2 Response of Linear Systems to Nonperiodic Inputs 151; h T& u" j* n- J) v0 j: i
3.5 Representation of Random (Data) Signals 1517 G y$ [: r/ ? M4 ^/ K. U
3.6 Use of SPICE (Pspice) In Fourier Analysis 1551 q) W( b7 G( Q6 H# i+ m/ G
Problems 167
8 O/ b( q1 g# X5 I5 _. h- }- `References 175+ F3 u1 H. ?8 Z# L& N, ~: x* L
4 Transmission Lines and Signal Integrity 1778 R O4 Q9 e4 w$ [/ o
4.1 The Transmission-Line Equations 181 c0 s) F( p8 b& h% z) u( k
4.2 The Per-Unit-Length Parameters 184
' p% W8 ?, o/ X3 a7 r4.2.1 Wire-Type Structures 186
$ D7 W" p2 A% Z, \6 ?* x" `+ F4 aviii CONTENTS3 ?! B9 k$ s% [3 h6 F
4.2.2 Printed Circuit Board (PCB) Structures 199
2 t( ~7 m, o( V! I+ E4 N3 l4.3 The Time-Domain Solution 204& h- r; Z$ p# H* K- R& w
' M8 y" F# F3 Q2 W/ [4.3.1 Graphical Solutions 204" Q3 x" j7 Q7 c; y
4.3.2 The SPICE Model 218+ E1 C' A" M! n7 m
4.4 High-Speed Digital Interconnects and Signal Integrity 225! L* Y$ _7 I( F: o( j5 Q& ]
4.4.1 Effect of Terminations on the Line Waveforms 230% r& ^8 V. W+ F- y
4.4.1.1 Effect of Capacitive Terminations 2335 g& B/ [4 J5 ~' T# I- h8 X
4.4.1.2 Effect of Inductive Terminations 2365 M5 ^! ^9 ~' ]. M4 F
4.4.2 Matching Schemes for Signal Integrity 238) M0 n$ I' J) { i: |9 h
4.4.3 When Does the Line Not Matter, i.e., When is Matching+ l# O, j; E) a( l; N- L3 g
Not Required? 244* M$ p& U* K4 K s0 i3 e
4.4.4 Effects of Line Discontinuities 247
9 v- Z; }( L) S( ^( @% U9 A4 _4.5 Sinusoidal Excitation of the Line and the Phasor Solution 260
, S* ^- |) U V3 [( ]& d4.5.1 Voltage and Current as Functions of Position 261
6 [/ M6 X( h: M# x4 `. C2 @4.5.2 Power Flow 269
+ L; M3 B$ B, E( L! ^( C4.5.3 Inclusion of Losses 270
! b2 w. C% x: R" {3 Y l4.5.4 Effect of Losses on Signal Integrity 273
# b! t( `4 F: Q$ o( e4.6 Lumped-Circuit Approximate Models 2839 G; G6 m0 U- T6 O, U
Problems 2879 p4 L3 A0 y; P6 }
References 297% n6 |- [! p: A/ A R6 q
5 Nonideal Behavior of Components 299
! j0 h0 W+ X$ K( ~' ^5.1 Wires 300
8 o5 Y, }( O) H5.1.1 Resistance and Internal Inductance of Wires 304
! Q2 w- e! _2 i, ` J( c" u5.1.2 External Inductance and Capacitance of Parallel Wires 308& C0 d/ T2 h2 D3 x4 w& Q
5.1.3 Lumped Equivalent Circuits of Parallel Wires 309
% E- B& m7 Z. t) r! i5.2 Printed Circuit Board (PCB) Lands 312: O# {/ S, a1 k3 _% Y( a
5.3 Effect of Component Leads 3159 e7 p/ G4 ~9 ^( O; p/ S( P- h
5.4 Resistors 317
% r4 v N2 g# {5.5 Capacitors 325 U4 G6 W2 Y" h+ q' X' d
5.6 Inductors 336
; r* R5 K4 D) L. H0 V$ b8 H- [6 E/ n5.7 Ferromagnetic Materials—Saturation and Frequency Response 340
% f9 n; {/ i! e4 E- P; v5 r5.8 Ferrite Beads 343
: q# J% y$ M+ i* w# A1 x+ I5.9 Common-Mode Chokes 346
& D/ ]3 }. n. W0 U5.10 Electromechanical Devices 352
# ?' _: V* h$ c/ R; A1 A5.10.1 DC Motors 352% u) [1 G3 ~- F3 n+ ^# p* O1 K
5.10.2 Stepper Motors 3557 M+ s$ q& n$ }' c4 {9 T& Y
5.10.3 AC Motors 3551 r) P. s, h& G2 q8 l, J
5.10.4 Solenoids 356! D2 p8 ]% l* F" W- j' X$ l
5.11 Digital Circuit Devices 3574 Q; [5 G4 X$ Y
5.12 Effect of Component Variability 3582 K% C3 o3 z, M% O
5.13 Mechanical Switches 359
* G- ? z- s3 l2 H& _2 ~5.13.1 Arcing at Switch Contacts 360
3 M1 y, I6 i2 s2 e8 C1 [CONTENTS ix2 Y: o0 F' q( J! W" M7 ^
5.13.2 The Showering Arc 363
, ]1 \' `; i- ~5.13.3 Arc Suppression 3643 u2 |3 D8 o# e
Problems 369
6 r |$ N% i0 @' P4 r0 d1 QReferences 375
K Y! l6 _) ^+ ~6 Conducted Emissions and Susceptibility 377
+ \! S1 }: a* t3 K6.1 Measurement of Conducted Emissions 3784 A2 b2 h2 O3 W [% z
6.1.1 The Line Impedance Stabilization Network (LISN) 379! `! m. |' L. a6 S. A
6.1.2 Common- and Differential-Mode Currents Again 381
# f8 x: C" A C* e# H2 n' P( V! `6.2 Power Supply Filters 385
! X/ u5 W# \ `* N2 ]6 v* E3 ~6.2.1 Basic Properties of Filters 385
: ?0 |! U8 W+ L% b9 W& j! E! F/ q6.2.2 A Generic Power Supply Filter Topology 3884 l" `: ~7 N6 I, J
6.2.3 Effect of Filter Elements on Common- and
+ g$ [9 G: _, s: b$ |Differential-Mode Currents 3901 v& k( p9 Q. ~
6.2.4 Separation of Conducted Emissions into Commonand& ^2 X) N+ t( ?" a) m G) j
Differential-Mode Components for
4 K: [. b' U& Q/ O) B, A0 x& t) iDiagnostic Purposes 396( q, @8 j$ q# @! P6 j; u
6.3 Power Supplies 401+ H8 O( g* h s( n2 O
6.3.1 Linear Power Supplies 405
( j! B7 L5 N; s1 T6.3.2 Switched-Mode Power Supplies (SMPS) 406/ H+ X; J* H& L, R# T
6.3.3 Effect of Power Supply Components on Conducted5 J* g$ X1 D0 T+ ^$ }$ }' L! B
Emissions 409
2 U* K8 g. ^2 q4 |6.4 Power Supply and Filter Placement 414 R% [' I! G+ C8 c8 j
6.5 Conducted Susceptibility 416. o2 L7 f6 w; {5 q7 |% `
Problems 416& d. ]# g2 y7 {+ T
References 4190 e( ~5 k; Z% A# ~9 X& H8 o x% W
7 Antennas 421
/ K: s6 X; o, T4 x- O7.1 Elemental Dipole Antennas 421
+ V9 L- L( a8 ?4 H" o6 ?+ Q' u" O7.1.1 The Electric (Hertzian) Dipole 422
8 d( a2 k* E1 P0 Q4 y7.1.2 The Magnetic Dipole (Loop) 426
% ~9 t) X1 r9 f% D$ y" F6 l/ G$ S7.2 The Half-Wave Dipole and Quarter-Wave Monopole Antennas 4294 _5 K! h; h/ D5 _5 n+ g( M+ G
7.3 Antenna Arrays 440
0 F" P4 y: d; o" ?7.4 Characterization of Antennas 448* V" l+ N3 Q# h. E m! h
7.4.1 Directivity and Gain 448. F6 ^% l+ D& G: T5 \' d* f
7.4.2 Effective Aperture 454. O) u- ~' O& p: H& M5 c7 D
7.4.3 Antenna Factor 4568 q8 v: a9 h& z4 r# z/ C
7.4.4 Effects of Balancing and Baluns 460
: v7 E, ?; _& H- G- R5 J! a7.4.5 Impedance Matching and the Use of pads 4630 M% `: F4 a. ~; u# K# S* Y! O$ ~
7.5 The Friis Transmission Equation 4662 y/ D3 e f$ ]( G
7.6 Effects of Reflections 470
, F9 Z" a3 w( I3 a9 P7.6.1 The Method of Images 470( B2 V W5 N3 _! E7 @3 b5 K+ T+ E; n
x CONTENTS
) F! t# R6 U2 d" V; g: |/ |7.6.2 Normal Incidence of Uniform Plane Waves on Plane,+ n# m9 m+ H1 J5 _' ^
Material Boundaries 4702 ~' X- [' V& U) C9 `" I8 Q7 J
7.6.3 Multipath Effects 479
+ n" n" Q* O2 A1 }! m" N7.7 Broadband Measurment Antennas 486' ^2 f5 P- D0 x: X
7.7.1 The Biconical Antenna 487
/ N/ g. w, r2 ^6 C/ [* u7.7.2 The Log-Periodic Antenna 4907 t0 ~( }' j% m" n
Problems 494
: B0 @1 s, }2 T/ aReferences 501$ o' Z0 H! M P3 p& a' p% b
8 Radiated Emissions and Susceptibility 503
2 `/ H& h. i' H0 f# \6 j" {8.1 Simple Emission Models for Wires and PCB Lands 504( n! k) S1 Y8 _2 c' Z1 a
8.1.1 Differential-Mode versus Common-Mode Currents 504
2 H/ S. o9 B( Q8.1.2 Differential-Mode Current Emission Model 509
$ ?: W/ K+ @# S8.1.3 Common-Mode Current Emission Model 514
1 V6 G: ?1 j6 \. h D! o- n8.1.4 Current Probes 518
) p& t% R3 o1 `8.1.5 Experimental Results 523: F' w, f; S$ ?+ |$ h/ D5 q# `
8.2 Simple Susceptibility Models for Wires and PCB Lands 533% N2 v3 \. L8 ~0 e
8.2.1 Experimental Results 544
3 C n% B; M0 v" ]2 Y0 W+ J8.2.2 Shielded Cables and SuRFace Transfer Impedance 5469 w3 J3 V9 H$ g; u7 L' o
Problems 550
: L5 k: V2 M+ G$ {( DReferences 556- w1 A% [: \1 f1 p7 G
9 Crosstalk 559: q: Y, V$ O* r' |
9.1 Three-Conductor Transmission Lines and Crosstalk 560+ l/ Q$ `+ \; ~3 }+ }4 b" Y/ u
9.2 The Transmission-Line Equations for Lossless Lines 564
8 w% t0 P# X- N9.3 The Per-Unit-Length Parameters 5674 N: R; t. l/ h4 A1 e
9.3.1 Homogeneous versus Inhomogeneous Media 5686 t1 Y: m3 _; w' r8 R
9.3.2 Wide-Separation Approximations for Wires 570/ @( h! P; z7 ^$ u" @/ r8 }
9.3.3 Numerical Methods for Other Structures 580, @/ T2 d, L, c) j- b! N) }' d" {! u' E
9.3.3.1 Wires with Dielectric Insulations
- \: t0 w0 Q5 U; P(Ribbon Cables) 586
; A: d5 e8 S4 j9.3.3.2 Rectangular Cross-Section Conductors
! {5 [ E+ R1 d4 z; ]4 J(PCB Lands) 5908 s& @; c) z$ b! J0 P) M0 S: n/ L
9.4 The Inductive–Capacitive Coupling Approximate Model 5957 D/ v- S9 h+ F% K( W+ ^8 ?
9.4.1 Frequency-Domain Inductive-Capacitive Coupling, f, A% X5 p2 D D
Model 599
# ~1 a) M0 L- X# l7 {# C- f1 d9.4.1.1 Inclusion of Losses: Common-Impedance
# G, t/ G5 x2 A" W( TCoupling 601
; y" ?( O( K+ n7 D d3 \9.4.1.2 Experimental Results 604
5 Z; C' r5 i) S' t9.4.2 Time-Domain Inductive–Capacitive Coupling Model 612
. b, ]/ ^8 U1 R0 ]7 z" n/ a9.4.2.1 Inclusion of Losses: Common-Impedance Coupling 616: N0 T6 i0 h& Q" n6 e
9.4.2.2 Experimental Results 617
- l% E$ _) F. Z( Z2 pCONTENTS xi
8 y' v! X' D. Z1 ?% K2 R3 Z. L9.5 Lumped-Circuit Approximate Models 624% H+ c. Q& ]1 A3 J/ J! j7 p6 }+ @
9.6 An Exact SPICE (PSPICE) Model for Lossless, Coupled Lines 6249 X" d3 s5 ], R) Q# L
9.6.1 Computed versus Experimental Results for Wires 633' A3 C0 e% L# u) @( b# p+ L9 v$ k
9.6.2 Computed versus Experimental Results for PCBs 640
) k o" P- Q; U8 {9.7 Shielded Wires 6470 `7 t* T3 \5 i+ Z/ M
9.7.1 Per-Unit-Length Parameters 648& y# S+ H/ u- _8 f1 L* [/ r. r
9.7.2 Inductive and Capacitive Coupling 651
& F6 r. b' V2 t& h. f' R* _9.7.3 Effect of Shield Grounding 658
* G. g0 p3 S4 l7 q7 i0 ?* m2 M9.7.4 Effect of Pigtails 667, t7 I& C) R. L; k9 M% k- p# R8 F
9.7.5 Effects of Multiple Shields 669
; ]8 k* T+ U1 ], `9.7.6 MTL Model Predictions 675
4 F( e5 z) M1 a) ?; r# P9.8 Twisted Wires 677" N, v+ S' [+ }( K a
9.8.1 Per-Unit-Length Parameters 681. A3 X& |( _1 J9 l! U
9.8.2 Inductive and Capacitive Coupling 685
& | B. ]( e2 ~1 {4 Z8 H8 y3 k9.8.3 Effects of Twist 689
; ]6 D) r8 O5 g9.8.4 Effects of Balancing 6983 x; K: }, ?9 i- a4 J# ]
Problems 701% k! O3 u0 P' U- O) N4 L, k
References 710
# a4 c2 |! F- d1 R10 Shielding 713
: U9 l! j0 l! P& g. I10.1 Shielding Effectiveness 718* A$ x" a$ S3 L4 K7 X5 o
10.2 Shielding Effectiveness: Far-Field Sources 721$ P, W4 A8 K; Q
10.2.1 Exact Solution 721; ]4 ^% _% w0 C" n1 N ^# n
10.2.2 Approximate Solution 725
! G% G4 V2 H! c6 ~10.2.2.1 Reflection Loss 725) R4 k/ g/ x/ M4 B/ E, M
10.2.2.2 Absorption Loss 728
( t; Q& }9 T! J; j1 D$ H10.2.2.3 Multiple-Reflection Loss 729
. r P9 z! V2 G7 Z( p! J10.2.2.4 Total Loss 731
" W2 X3 W) h7 C5 y# O7 F10.3 Shielding Effectiveness: Near-Field Sources 735
" h8 f2 p8 m' L2 ]: y" F10.3.1 Near Field versus Far Field 736* \7 n6 q0 }! K4 g+ [' W
10.3.2 Electric Sources 740& G: h, W' O) ~6 L/ |1 @+ y
10.3.3 Magnetic Sources 740
+ K2 T' E& ]' g10.4 Low-Frequency, Magnetic Field Shielding 742
. D& B7 u `; p8 O' J10.5 Effect of Apertures 7457 b: L/ ~" h, f4 F, c3 i% K
Problems 750
7 Y. I- d$ s" P9 _" N( z, S# @References 751
; G6 I2 F9 y/ B! ^$ @7 ?4 e11 System Design for EMC 753* P5 m! g, l# B5 u# _( o
11.1 Changing the Way We Think about Electrical Phenomena 758
6 f; P* i! f& Q$ x5 q2 {11.1.1 Nonideal Behavior of Components and the+ k v. Z/ M7 b& t
Hidden Schematic 758+ q7 _0 i6 a' B& ]6 u" x9 _
11.1.2 “Electrons Do Not Read Schematics” 763$ H6 f" u/ c; P0 m$ E/ y
xii CONTENTS
/ L' R: D; [7 [4 V1 o11.1.3 What Do We Mean by the Term “Shielding”? 766
! `" K2 E: ^0 e! Q j6 W11.2 What Do We Mean by the Term “Ground”? 768
. |5 x6 }2 U v6 O11.2.1 Safety Ground 771
2 `. ]) @- W( N" Y- ]11.2.2 Signal Ground 774* Z) B$ B s$ P b: ^6 A
11.2.3 Ground Bounce and Partial Inductance 7759 {, M1 B1 v' F; o
11.2.3.1 Partial Inductance of Wires 781- i; X2 X, Y3 g2 A3 i/ D3 B( F8 O3 w
11.2.3.2 Partial Inductance of PCB Lands 7868 |2 e8 Z# Y) X# T- X
11.2.4 Currents Return to Their Source on the Paths of Lowest
# B0 V4 z9 Q2 C bImpedance 7878 Z) E7 Z# _) S9 H
11.2.5 Utilizing Mutual Inductance and Image Planes to Force4 [; t- @1 G) o( \* t' l( i
Currents to Return on a Desired Path 793& p6 r; v6 Q: P$ j4 h% p( g
11.2.6 Single-Point Grounding, Multipoint Grounding, and
6 F5 m( D+ v [$ V; P ^' d( IHybrid Grounding 796
% g1 Q+ v) q6 I/ c5 X- Y% j11.2.7 Ground Loops and Subsystem Decoupling 802
2 ~1 |# v' D! f0 J v" V- E11.3 Printed Circuit Board (PCB) Design 805
8 d0 \0 Y+ J- u6 x0 g F) T5 o11.3.1 Component Selection 805
- {, V! o- t$ D! @& d X11.3.2 Component Speed and Placement 806- Z4 D$ g: |$ J
11.3.3 Cable I/O Placement and Filtering 808
% L8 [9 U- ^. ?! N* V/ y11.3.4 The Important Ground Grid 810! n4 O7 P3 R2 X$ x1 c1 g2 I
11.3.5 Power Distribution and Decoupling Capacitors 812
8 ~0 R* O8 l5 _11.3.6 Reduction of Loop Areas 8225 ?0 q8 x5 P# G: O/ P0 K
11.3.7 Mixed-Signal PCB Partitioning 823
t! U, ^4 j4 U2 R11.4 System Configuration and Design 827" Y7 [. ]8 |1 l9 A4 h- l' j$ \
11.4.1 System Enclosures 827
, D; s) a7 U* I' a% r: u( e11.4.2 Power Line Filter Placement 828" B/ p2 i% w2 i1 d. I( U$ j
11.4.3 Interconnection and Number of Printed
. B% f! s5 `" ~* y6 K( UCircuit Boards 8292 G3 |- |7 j! B* Y6 L) I
11.4.4 Internal Cable Routing and Connector Placement 831
; z1 Y* Q1 z1 l+ m) }11.4.5 PCB and Subsystem Placement 832. j' L( ]0 _! f7 Z! W$ z; V
11.4.6 PCB and Subsystem Decoupling 832( r# J3 w& T- E
11.4.7 Motor Noise Suppression 832' O( s ^0 J0 K
11.4.8 Electrostatic Discharge (ESD) 834% r& R0 K3 p1 m- G0 C( C" G; g3 R
11.5 Diagnostic Tools 847
6 o7 G# s+ E( H9 U; ~) n. y11.5.1 The concept of Dominant Effect in the Diagnosis of( Q2 l6 i0 @: X" ~
EMC Problems 850; ?; Z3 v' K6 J# V* U. d1 L2 N
Problem 856
# O+ `# J2 x& W3 QReferences 857. M5 w* Y. U z/ g" B
Appendix A The Phasor Solution Method 8596 M% O1 ^) ^% s4 Y
A.1 Solving Differential Equations for Their Sinusoidal,6 ^( E1 B6 ^3 [! ~1 _$ [% U- x
Steady-State Solution 859
- p) m) F& I/ ^CONTENTS xiii
4 F, S7 W; T" W y. V0 p4 xA.2 Solving Electric Circuits for Their Sinusoidal,$ ^- z3 D7 y& x) S" J. k0 P C- w
Steady-State Response 8632 h: J0 E3 e- e) t$ D# l
Problems 867
5 J: h4 W x8 g/ B0 d+ }) sReferences 869+ E; B. B- o! }
Appendix B The Electromagnetic Field Equations and Waves 871, G& d( w$ Y; H" t
B.1 Vector Analysis 872$ H0 [' e8 o: V5 u5 s! Y' v2 m
B.2 Maxwell’s Equations 881
( b2 E# K5 H9 t- WB.2.1 Faraday’s Law 881& n8 M% J% k+ s+ {( S
B.2.2 Ampere’s Law 892
- I; l$ D; j8 u& g" oB.2.3 Gauss’ Laws 898 g+ y- h% Q1 H _9 Z
B.2.4 Conservation of Charge 9000 Q$ V% H4 | b; T. b$ u) N; J6 O4 C
B.2.5 Constitutive Parameters of the Medium 900* ]' S# e7 G* ?: \ d) [" d
B.3 Boundary Conditions 902+ Z9 s0 v/ {6 q
B.4 Sinusoidal Steady State 907' {4 l* i# \9 _
B.5 Power Flow 909$ G- Y9 z3 S8 b: h. i. |
B.6 Uniform Plane Waves 909
2 O) K9 n" l/ v; dB.6.1 Lossless Media 9120 K0 M- R _. G+ d$ `9 F
B.6.2 Lossy Media 9186 f7 V. ~" O( [7 q
B.6.3 Power Flow 922
: C; T6 l) B7 Q6 }2 D5 d8 i hB.6.4 Conductors versus Dielectrics 9233 k' _" L' W% {4 D4 [0 l3 f7 @
B.6.5 Skin Depth 925
% ~2 e" G6 Z9 U) N Z0 j7 k& XB.7 Static (DC) Electromagnetic Field Relations—! B9 D& S$ B* P: q, Y1 u) v- e9 V- J
a Special Case 927
( K$ \2 J8 h0 F+ OB.7.1 Maxwell’s Equations for Static (DC) Fields 927. d7 K% H# _/ j. Z
B.7.1.1 Range of Applicability for
" `2 q" e M# f2 i6 l! NLow-Frequency Fields 928# a8 b5 Z9 S6 M* K' j: _" S. U
B.7.2 Two-Dimensional Fields and Laplace’s2 u, _- C: h) D! T
Equation 928/ k4 |: V G4 d0 X! r+ l
Problems 9303 @. o/ H, _8 V e/ a! a
References 939
X$ h$ b; O* t# p( f5 `Appendix C Computer Codes for Calculating the Per-Unit-Length. o, k& h. N2 X) O
(PUL) Parameters and Crosstalk of Multiconductor: ^* U# ]& t) o
Transmission Lines 941 n6 D X! j0 q" _
C.1 WIDESEP.FOR for Computing the PUL
2 R! |; b% B0 I/ @, BParameter Matrices of Widely Spaced Wires 942
* m, k8 P7 S1 t) v# \* R7 f* lC.2 RIBBON.FOR for Computing the PUL Parameter
, V. t$ e- j7 L5 |6 a: C' ZMatrices of Ribbon Cables 947- q0 z* c- g) R
C.3 PCB.FOR for Computing the PUL Parameter
( }0 }; n/ _1 [Matrices of Printed Circuit Boards 949
% n* K5 B9 z, N8 v9 O* v6 ixiv CONTENTS; p, `) c$ m& i* N* ?! z
C.4 MSTRP.FOR for Computing the PUL Parameter) G. b# S5 N! t1 R/ X4 K0 W
Matrices of Coupled Microstrip Lines 9518 y9 E8 N4 `" p% _
C.5 STRPLINE.FOR for Computing the PUL
3 L9 k( y' b8 t; p6 p" {. WParameter Matrices of Coupled Striplines 952
0 g/ o5 W' g- ?) u5 ?C.6 SPICEMTL.FOR for Computing a SPICE
1 k V q- |) ~! B7 A) W(PSPICE) Subcircuit Model of a Lossless,
' [3 q/ ]0 q3 H+ Q! |, VMulticonductor Transmission Line 954
1 O4 _2 I6 u9 l g/ nC.7 SPICELPI.FOR For Computing a SPICE (PSPICE)4 k+ r/ _3 W( _
Subcircuit of a Lumped-Pi Model of a Lossless,
" m6 R+ H3 m0 ~$ [0 ]Multiconductor Transmission Line 956
B7 `. |# ]2 a1 C! T: vAppendix D A SPICE (PSPICE) Tutorial 9590 A: I# G3 ]" u) d2 V+ q
D.1 Creating the SPICE or PSPICE Program 960# a7 c, O' { }2 s h* h: c' _& b
D.2 Circuit Description 961; J/ S* u {: e! k/ l# U E
D.3 Execution Statements 966
1 X( [* X+ E! ^2 w3 JD.4 Output Statements 968
2 l$ K/ i( v: k7 ^8 ^D.5 Examples 970
# p( D$ Y! J$ l2 j6 \5 J+ ?+ @& yReferences 974% ^ P- h2 P6 Z3 z( U
Index 975+ [- L% J* C0 Z
! X4 e* ~; p# W; l. N% [9 Z |
|