|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
Basic concepts in RF Design9 @9 m' [- x7 ?
Overview
# f7 J! m( \4 I7 C5 H. p, f# {$ xSystem Theory
, }1 L# O, A/ K: B1 ?; vEffects of Nonlinearities
6 Y- C5 I9 B# F& W& S Z( BGain Compression$ y/ N% L7 w! {/ d
Desensitization and Blocking$ y" Z0 Q& f6 D# ~' i T% d. b
CroSSModulation
, X# N1 O; J9 t8 C2 ~. L+ o, wIntermodulation
4 _+ [- w( E1 h5 ^2 yAdjacent Channel Power Rejection" B& |# J0 s% |5 r/ f- Z
Random Signals
L! p& k5 N( HNoise and Noise Figure+ B- I- t* D9 i! Z6 A
Input Referred Noise
5 y5 K5 i7 O, b) W/ E6 ?, ]' s5 sNoise Figure of Lossy
, R& | T. z- G- N
9 u; B8 `% {9 `5 D. ?, z. A7 q
- J7 c+ q" N8 l% A, S; G) e4 VSystem Theory (1)
: T* m; F' Z6 K2 Z4 c; J# k+ ALinear Systems
& E) e+ e$ E6 h; C/ z1 U8 {1 1 x ® y 2 2 x ® y
' y/ A' z4 } z! {) i1 2 1 2 ax + bx ®ay + by M6 O, b8 Y5 i H3 P
If inputs x1 and x2 generate outputs y1, y2, A# W; Y4 C) h3 _3 i
For a linear system output can be expressed as a linear combination of inputs
$ c, ]/ U% K# ^ E2 Q) z9 \for all values of the constants a and b0 R" m. H" S6 ?% i
Time Invariant Systems& a1 P d1 k0 U& ^" f8 W$ n* g
For a time invariant system time shift in input results in the same time shift in output g7 }7 M5 ^4 h; ^* M, W% l0 n
x(t )® y(t ) then x(t -t )® y(t -t )2 b8 [; m5 W7 A2 D# A8 C
Any system that does not satisfy this condition is nonlinear
, p6 h6 ?- i( `Obs. A system is nonlinear if it has nonzero initial conditions5 A5 P7 o0 o; q) ?4 d& Z! g& O. H
for all values of t) i4 s; R w' [8 n- Q4 k$ M) {
% e. f1 R+ T9 ?5 l1 J4 e" Y$ r7 b9 @8 b, N/ u$ i9 F% V
4 j% C+ p- e) f8 v" e& b) ^
|
|