|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
1 L; Q5 S* D2 y f; e链表是C语言编程中常用的数据结构,比如我们要建一个整数链表,一般可能这么定义:% \' x# d* N# x: [2 o
, f2 d/ V* h% M% I
- struct int_node {
- int val;
- struct int_node *next;
- };) v5 {1 y. l+ v2 G2 j8 u( E/ h
5 r( V; F. c; Q0 d7 V6 }5 z2 e+ H8 l. e3 _ J/ a* }
为了实现链表的插入、删除、遍历等功能,另外要再实现一系列函数,比如:
9 e+ A1 }( {* m8 i" r$ i4 o7 z% Z. V$ G3 K1 [3 Z# Y5 Y
- void insert_node(struct int_node **head, int val);
- void delete_node(struct int_node *head, struct int_node *current);
- void access_node(struct int_node *head)
- {
- struct int_node *node;
- for (node = head; node != NULL; node = node->next) {
- // do something here
- }
- }
; y* D! h3 U; {$ t+ O3 t4 x 2 g0 h: p' ^; p8 V
& f& d+ c! j, q' D8 a c3 k0 Y 如果我们的代码里只有这么一个数据结构的话,这样做当然没有问题,但是当代码的规模足够大,需要管理很多种链表,难道需要为每一种链表都要实现一套插入、删除、遍历等功能函数吗?
0 C: D( f1 A! o4 m/ t% J! z; q$ n9 s
熟悉C++的同学可能会说,我们可以用标准模板库啊,但是,我们这里谈的是C,在C语言里有没有比较好的方法呢?
: G, L) D5 V9 _7 Y. e
x+ w3 ^! M- x4 U7 FMr.Dave在他的博客里介绍了自己的实现,这个实现是个很好的方案,各位不妨可以参考一下。在本文中,我们把目光投向当今开源界最大的C项目--Linux Kernel,看看Linux内核如何解决这个问题。
' B& @, g5 x* ?4 z3 E
' X+ C. I- I' U e1 O2 eLinux内核中一般使用双向链表,声明为struct list_head,这个结构体是在include/linux/types.h中定义的,链表的访问是以宏或者内联函数的形式在include/linux/list.h中定义。; F* y& {! U! N
2 W6 w" l2 C" V
- struct list_head {
- struct list_head *next, *prev;
- };( V) @ I; d% B% o* X! F
7 W% n, [& I, C6 S g4 k( c2 {
n, x; m: @1 l& \7 J3 mLinux内核为链表提供了一致的访问接口。) |6 f/ ]5 n* f% h; { x: d( E
+ m* @- V" [0 G" M* r6 G- N* ]6 y
- void INIT_LIST_HEAD(struct list_head *list);
- void list_add(struct list_head *new, struct list_head *head);
- void list_add_tail(struct list_head *new, struct list_head *head);
- void list_del(struct list_head *entry);
- int list_empty(const struct list_head *head);' z+ \ S ]! [' l* x3 u
% }; p2 T, }* [4 y+ Y
, ?$ u- l$ h) w" v4 m
以上只是从Linux内核里摘选的几个常用接口,更多的定义请参考Linux内核源代码。
) {* j; g, y, l
. D) U R# z [; l( v; s) p: t我们先通过一个简单的实作来对Linux内核如何处理链表建立一个感性的认识。
2 i& \$ C1 a7 L& W( V& t
* ^3 Y0 \# P& w# U, [* U- #include <stdio.h>
- #include "list.h"
- struct int_node {
- int val;
- struct list_head list;
- };
- int main()
- {
- struct list_head head, *plist;
- struct int_node a, b;
- a.val = 2;
- b.val = 3;
- INIT_LIST_HEAD(&head);
- list_add(&a.list, &head);
- list_add(&b.list, &head);
- list_for_each(plist, &head) {
- struct int_node *node = list_entry(plist, struct int_node, list);
- printf("val = %d\n", node->val);
- }
- return 0;
- }7 F( `) a, J; Z0 h. ^+ ]. r
@: `! ?6 Z$ z( `5 N& p4 R; [
% y9 A' a9 m/ U! }, @看完这个实作,是不是觉得在C代码里管理一个链表也很简单呢?
0 n: j! ~: M9 G1 d) F' N' c4 ]) i9 b: O5 w
代码中包含的头文件list.h是我从Linux内核里抽取出来并做了一点修改的链表处理代码,现附在这里给大家参考,使用的时候只要把这个头文件包含到自己的工程里即可。! Z/ a" P& M2 d1 A
; P: P8 X6 m+ V5 x- #ifndef __C_LIST_H
- #define __C_LIST_H
- typedef unsigned char u8;
- typedef unsigned short u16;
- typedef unsigned int u32;
- typedef unsigned long size_t;
- #define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
- /**
- * container_of - cast a member of a structure out to the containing structure
- * @ptr: the pointer to the member.
- * @type: the type of the container struct this is embedded in.
- * @member: the name of the member within the struct.
- *
- */
- #define container_of(ptr, type, member) (type *)((char *)ptr -offsetof(type,member))
- /*
- * These are non-NULL pointers that will result in page faults
- * under normal circumstances, used to verify that nobody uses
- * non-initialized list entries.
- */
- #define LIST_POISON1 ((void *) 0x00100100)
- #define LIST_POISON2 ((void *) 0x00200200)
- struct list_head {
- struct list_head *next, *prev;
- };
- /**
- * list_entry - get the struct for this entry
- * @ptr: the &struct list_head pointer.
- * @type: the type of the struct this is embedded in.
- * @member: the name of the list_struct within the struct.
- */
- #define list_entry(ptr, type, member) \
- container_of(ptr, type, member)
- #define LIST_HEAD_INIT(name) { &(name), &(name) }
- #define LIST_HEAD(name) \
- struct list_head name = LIST_HEAD_INIT(name)
- static inline void INIT_LIST_HEAD(struct list_head *list)
- {
- list->next = list;
- list->prev = list;
- }
- /**
- * list_for_each - iterate over a list
- * @pos: the &struct list_head to use as a loop counter.
- * @head: the head for your list.
- */
- #define list_for_each(pos, head) \
- for (pos = (head)->next; pos != (head); pos = pos->next)
- /**
- * list_for_each_r - iterate over a list reversely
- * @pos: the &struct list_head to use as a loop counter.
- * @head: the head for your list.
- */
- #define list_for_each_r(pos, head) \
- for (pos = (head)->prev; pos != (head); pos = pos->prev)
- /*
- * Insert a new entry between two known consecutive entries.
- *
- * This is only for internal list manipulation where we know
- * the prev/next entries already!
- */
- static inline void __list_add(struct list_head *new,
- struct list_head *prev,
- struct list_head *next)
- {
- next->prev = new;
- new->next = next;
- new->prev = prev;
- prev->next = new;
- }
- /**
- * list_add - add a new entry
- * @new: new entry to be added
- * @head: list head to add it after
- *
- * Insert a new entry after the specified head.
- * This is good for implementing stacks.
- */
- static inline void list_add(struct list_head *new, struct list_head *head)
- {
- __list_add(new, head, head->next);
- }
- /**
- * list_add_tail - add a new entry
- * @new: new entry to be added
- * @head: list head to add it before
- *
- * Insert a new entry before the specified head.
- * This is useful for implementing queues.
- */
- static inline void list_add_tail(struct list_head *new, struct list_head *head)
- {
- __list_add(new, head->prev, head);
- }
- /*
- * Delete a list entry by making the prev/next entries
- * point to each other.
- *
- * This is only for internal list manipulation where we know
- * the prev/next entries already!
- */
- static inline void __list_del(struct list_head * prev, struct list_head * next)
- {
- next->prev = prev;
- prev->next = next;
- }
- /**
- * list_del - deletes entry from list.
- * @entry: the element to delete from the list.
- * Note: list_empty on entry does not return true after this, the entry is
- * in an undefined state.
- */
- static inline void list_del(struct list_head *entry)
- {
- __list_del(entry->prev, entry->next);
- entry->next = LIST_POISON1;
- entry->prev = LIST_POISON2;
- }
- /**
- * list_empty - tests whether a list is empty
- * @head: the list to test.
- */
- static inline int list_empty(const struct list_head *head)
- {
- return head->next == head;
- }
- static inline void __list_splice(struct list_head *list,
- struct list_head *head)
- {
- struct list_head *first = list->next;
- struct list_head *last = list->prev;
- struct list_head *at = head->next;
- first->prev = head;
- head->next = first;
- last->next = at;
- at->prev = last;
- }
- /**
- * list_splice - join two lists
- * @list: the new list to add.
- * @head: the place to add it in the first list.
- */
- static inline void list_splice(struct list_head *list, struct list_head *head)
- {
- if (!list_empty(list))
- __list_splice(list, head);
- }
- #endif // __C_LIST_H( n8 o- h" |7 \. m _7 @7 B, ?
8 D7 ], R: D) X5 o
& q- a" V P' a3 w" ~& x/ Y
list_head通常是嵌在数据结构内使用,在上文的实作中我们还是以整数链表为例,int_node的定义如下:
6 ? R, j$ ^' b; F; O" x1 [' S4 @7 c7 @/ G `
- struct int_node {
- int val;
- struct list_head list;
- };
# x% O1 D0 l) ~: f$ g- j
' e) M- _7 X, k0 m8 {% b3 r4 v4 c C' |) b
使用list_head组织的链表的结构如下图所示:
6 H9 Z( Y! P6 r- n" p- k
/ t1 e# Y# l! f9 o
8 U* l3 V8 u2 W8 v I6 i2 y$ ?! R% F5 s0 M$ l; }
0 m" N% @: F! R: x$ o4 b遍历链表是用宏list_for_each来完成。
: K2 B, W5 h# x! `' C& t$ A
( C8 f0 a: c- l- #define list_for_each(pos, head) \
- for (pos = (head)->next; prefetch(pos->next), pos != (head); \
- pos = pos->next)( Y1 d! E! U' t% j( |/ N
0 o8 W/ I8 X" w# e G. @! i1 Y* e, b* n" J+ s6 m
在这里,pos和head均是struct list_head。在遍历的过程中如果需要访问节点,可以用list_entry来取得这个节点的基址。2 ~( p$ u# n `, ~8 h
( ?" U6 X3 l3 K j. n6 l$ {- #define list_entry(ptr, type, member) \
- container_of(ptr, type, member)
8 G# w2 U8 _/ _4 {
( h8 l9 \ S6 I% ?, t8 X' p7 ^+ M. v4 H7 \6 @4 w8 r- V9 p- p
我们来看看container_of是如何实现的。如下图所示,我们已经知道TYPE结构中MEMBER的地址,如果要得到这个结构体的地址,只需要知道MEMBER在结构体中的偏移量就可以了。如何得到这个偏移量地址呢?这里用到C语言的一个小技巧,我们不妨把结构体投影到地址为0的地方,那么成员的绝对地址就是偏移量。得到偏移量之后,再根据ptr指针指向的地址,就可以很容易的计算出结构体的地址。
8 Y% y3 r. j$ N& L7 D# W% P% }/ p: S. b M8 T$ \* Z: @3 ^
5 ~6 k: c% ^) P: ^9 X9 ^% {3 z6 F/ C6 J3 d" W4 K7 E* {' H% n0 x
list_entry就是通过上面的方法从ptr指针得到我们需要的type结构体。+ D3 a" J/ k! g( T; c
! F" ^" o# ?6 z/ y
Linux内核代码博大精深,陈莉君老师曾把它形容为“覆压三百余里,隔离天日”(摘自《阿房宫赋》),可见其内容之丰富、结构之庞杂。内核里有着众多重要的数据结构,具有相关性的数据结构之间很多都是用本文介绍的链表组织在一起,看来list_head结构虽小,作用可真不小。9 G7 |3 X. t9 E: M0 e7 a; D
% o* J% K0 C6 }( d' jLinux内核是个伟大的工程,其源代码里还有很多精妙之处,值得C/C++程序员认真去阅读,即使我们不去做内核相关的工作,阅读精彩的代码对程序员自我修养的提高也是大有裨益的。
+ R( U1 y6 X2 q" ]
" R% x! i" q; r. D6 H+ m: o9 x9 ] |
|