TA的每日心情 | 怒 2019-11-20 15:22 |
|---|
签到天数: 2 天 [LV.1]初来乍到
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
. C$ ?" k. m' B8 W% ^& R0 x* ~
(1)序列前向选择( SFS , Sequential Forward Selection )$ O+ z1 d+ f. x( `' M( F/ g
6 N% S3 [4 ]* X7 l: {; `算法描述:特征子集X从空集开始,每次选择一个特征x加入特征子集X,使得特征函数J( X)最优。简单说就是,每次都选择一个使得评价函数的取值达到最优的特征加入,其实就是一种简单的贪心算法。7 } c( O l' g
6 V# x; _0 u$ w* M5 n
1 D% ?& `. [& b
$ C9 B, L) H# n9 h$ I
9 F" W$ U: i J; H4 R; [) z! h6 y$ k1 K" L% {% ~/ D
算法评价:缺点是只能加入特征而不能去除特征。例如:特征A完全依赖于特征B与C,可以认为如果加入了特征B与C则A就是多余的。假设序列前向选择算法首先将A加入特征集,然后又将B与C加入,那么特征子集中就包含了多余的特征A。6 d4 H1 Y4 }* C5 C$ p; S
( Y1 p3 c/ C1 Y4 Z8 U代码:
- I2 A* ?9 O N, X- E4 z$ c% u" C+ Z V- ^6 ` M- }, Z0 U1 ~4 k
- %----4.17编 顺序前进法特征选择 成功!
- 2 h9 T! K5 D# r* w
- clear;
- clc;
- %--------特征导入 请自行修改
) Z4 q P1 }" {/ J. a! R- M=512;N=512;
- load coouRFeature16_0521_Aerial1 %%%共生矩阵 96.14%
- wfeature{1}=coourfeature(:,1);
- wfeature{2}=coourfeature(:,2);
- wfeature{3}=coourfeature(:,3);
- load fufeature_0521_SARAerial1_512%%复小波 98.26%
- for i=1:13
- wfeature{3+i}=wavefeature(:,i);
- end
- load wavefeature_0521_SARAerial1_512%%%非下采样小波 97.58%
- for i=1:7
- wfeature{16+i}=wavefeature(:,i);
- end
- load wavefeature_0521_Aerial1%%小波 97.65%
- for i=1:7
- wfeature{23+i}=wavefeature(:,i);
- end
- % load rwt_cofeature96_0423_lsy1
$ r, @ s7 f, w- % for i=1:96
9 ?% n$ O+ W8 i- % wfeature{30+i}=feature(:,i);
- 4 w7 K6 X5 ]5 w5 m
- % end
8 }; _1 _- s* q$ a3 e9 U- %%%%%%%----------归一化
- # F9 I, }. ?, p* T4 d
- [m n]=size(wfeature{1});
- for j=1:30%一共30组特征 这里 请自行修改
- mx=max(wfeature{j});
- mi=min(wfeature{j});
- mxx=(mx-mi);
- mii=ones([m n])*mi;
- wfeature{j}=(wfeature{j}-mii)./mxx;
- end
- %%---------------SFS 先选4个特征尝试
K! b! W8 w. L8 m- chosen=[];%%表示已选的特征
- chosen=[chosen 1];
- Jc=0;%%选出的J值
- for j=1:5 %选5个特征
- J=zeros([1 30]);
- for i=2:30 %一共30组特征 这里 请自行修改
- [mm nn]=size(chosen);
- for p=1:nn
- if i==chosen(p)
- J(i)=0;
- break;
- else
- J(i)=J(i)-sum(sum((wfeature{i}-wfeature{chosen(p)}).^2));
- end
- end
- end
- mi=min(J);
- for i=1:30
- if J(i)==0
- J(i)=mi;
- end
- end
- ma=max(J);
- for i=1:30
- if J(i)==ma
- chosen=[chosen i];
- break;
- end
- end
- end
- save Aerial1_6t_chosen chosen
- [mm nn]=size(chosen);
- tezh=[];
- for i=1:nn
- tezh=[tezh wfeature{chosen(i)}];
- end
- %%%%%%%%聚类
- 6 q' o* u5 r7 }
- [IDC,U]=kmeans(tezh,2);
- cc(IDC==1,1)=0;
- cc(IDC==2,1)=0.75;
- 7 z/ s2 y/ u/ {
- g=reshape(cc,M,N);
- figure,imshow(g);4 [' i7 {7 n0 f7 S! @
5 c# U( }3 d a1 p/ l# `) b; z) R" q W' F) X
(2)序列后向选择( SBS , Sequential Backward Selection ); W; M8 x1 j A" r1 v C! k0 ~
. L7 u, N5 q8 N9 A& q, L5 b7 j0 y算法描述:从特征全集O开始,每次从特征集O中剔除一个特征x,使得剔除特征x后评价函数值达到最优。
$ _4 e+ Y6 ~2 N6 b. a
8 A3 ^% ?3 o3 D+ q$ [: D0 I+ a: D) l算法评价:序列后向选择与序列前向选择正好相反,它的缺点是特征只能去除不能加入。
4 Z7 R- k0 S4 p& ]7 H# N7 T3 |* F5 t
4 m( U5 x7 J6 x, Y
, b- h) {. T. Q% e% s+ L代码:! l1 b; P- M! d N
; [( t- V) N6 L8 l7 q( [- q- %----4.17编 顺序后退法特征选择
; W: O$ T/ u p! f3 A- clear;
- clc;
- %--------特征导入 请自行修改
* X8 h$ P* `- `# h0 M- A=imread('lsy1.gif');
- [M N]=size(A);
- load coourfeature_0414_lsy1 %%%共生矩阵 96.14%
- feature{1}=coourfeature(:,1);
- feature{2}=coourfeature(:,2);
- feature{3}=coourfeature(:,3);
- load fuwavefeature_0413_lsy1 %%复小波 98.26%
- for i=1:13
- feature{3+i}=wavefeature(:,i);
- end
- load wavefeature_0413_feixia_lsy1%%%非下采样小波 97.58%
- for i=1:7
- feature{16+i}=wavefeature(:,i);
- end
- load wavefeature_0417_lsy1%%小波 97.65%
- for i=1:7
- feature{23+i}=wavefeature(:,i);
- end
- %%%%%%%----------归一化-归一化
% N9 p1 l* h& b. \- [m n]=size(feature{1});
- for j=1:30%一共30组特征 这里 请自行修改
- mx=max(feature{j});
- mi=min(feature{j});
- mxx=(mx-mi);
- mii=ones([m n])*mi;
- feature{j}=(feature{j}-mii)./mxx;
- end
- %%---------------SBS
- 2 R$ I$ a8 s0 \' ~$ G5 g }4 r
- chosen=[];dele=[];
- for i=1:30
- chosen=[chosen i];
- end
9 l' e9 j& x, {* u* L: f- for j=1:24 %%删10个,留20个
- J=zeros([1 30]);ii=0; %J(1)是删1的结果,J(2)是删除2 的结果......
- for i=1:30 %???dele 是必要的么???????????????????????%一共30组特征 这里 请自行修改
- [mm nn]=size(chosen);
- for p=1:nn
- if sum(i==dele)~=0
- J(i)=0;
- break;
- else
- for q=1:nn
- if (chosen(q)~=i) & (chosen(p)~=i)
- J(i)=J(i)-sum(sum((feature{chosen(q)}-feature{chosen(p)}).^2));
- end
- end
- end
- end
- end
- mi=min(J);
- for cc=1:30
- if J(cc)==0
- J(cc)=mi;
- end
- end
- [ma we]=max(J);
- dele=[dele we];
- for dd=1:nn
- if chosen(dd)==we
- chosen(dd)=[];
- end
- end
- % chosen=[2 4 5 6 7 8 9 11 12 13 14 19 20 22 23 26 27 28 29 30];
g2 l/ ]% E6 A( p% G' `/ Y- [mm nn]=size(chosen);
- tezh=[];
- for i=1:nn
- tezh=[tezh feature{chosen(i)}];
- end
- %%%%%%%%聚类
; y) ~( k& w7 n5 `( n0 j3 Y) M# |' r" Q- [IDC,U]=kmeans(tezh,2);
- cc(IDC==1,1)=0;
- cc(IDC==2,1)=0.75;
- g=reshape(cc,M,N);
- figure,imshow(g);
- %%%%%%%%%%%%计算正确率
- % }: d; O, A" I4 _1 N2 f3 [
- ju=ones(M)*0.75;
- for i=1:M
- for j=1:M/2
- ju(i,j)=0;
- end
- end
- ju2=g-ju;
- prob=prod(size(find(ju2~=0)))/(m*n)
- 1-prob# D# c" q. K l' Q: ?3 i# M
, g4 J7 {& o% P
& ~! [9 F/ q* F ~9 e- L6 }( y: \, [另外,SFS与SBS都属于贪心算法,容易陷入局部最优值。 |
|