|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
最大信息系数 maximal information coefficient (MIC),又称最大互信息系数。
* v2 |1 I! Z7 t$ T( j/ Q& ?6 c3 S# k- ~
特征选择步骤
4 J) g1 o g5 s, H( E4 ^
/ c8 L" [; V9 }- w$ A( l! h& @①计算不同维度(特征)之间的MIC值,MIC值越大,说明这两个维度越接近。% D# B4 x0 I. `# ~
②寻找那些与其他维度MIC值较小的维度,根据阈值选出这些特征。0 K9 v5 n' k: C% ~3 l; n3 H
③利用SVM训练
+ O! X5 q) R. W7 z9 I7 |④训练结果在测试集上判断错误率2 W+ m' f0 U. S7 r
) e: K6 q6 ~% g; z8 u6 q3 zMATLAB代码:1 N& V* T2 R' O+ x) T4 ~) {
1 a1 B0 P6 U: m, X- n* d- clc
- load train_F.mat;
- load train_L.mat;
- load test_F.mat;
- load test_L.mat;
- Dim = 22;
- MIC_matrix = zeros(Dim, Dim);
- for i = 1:Dim
- for j = 1:Dim
- X_v = reshape(train_F(:,i),1,size(train_F(:,i),1));
- Y_v = reshape(train_F(:,j),1,size(train_F(:,j),1));
- [A, ~] = mine(X_v, Y_v);
- MIC_matrix(i, j) = A.mic;
- end
- end
- MIC_matrix(MIC_matrix>0.4) = 0;
- MIC_matrix(MIC_matrix~=0) = 1;
- inmodel = sum(MIC_matrix);
- threshold = sum(inmodel)/Dim;
- inmodel(inmodel <= threshold) = 0;
- inmodel(inmodel > threshold) = 1;
- model = libsvmtrain(train_L,train_F(:,inmodel));
- [predict_label, ~, ~] = libsvmpredict(test_L,test_F(:,inmodel),model);
- error=0;
- for j=1:length(test_L)
- if(predict_label(j,1) ~= test_L(j,1))
- error = error+1;
- end
- end
- error = error/length(test_L);
! z6 P' f7 T) p& k" o; | |
|