EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
Filter DataFilter Difference Equation(滤波器差分方程)滤波器是一种数据处理技术,可以消除数据中的高频波动或从数据中去除特定频率的周期性趋势。 在MATLAB®中,滤波器功能根据以下差分方程过滤数据x的向量,该差分方程描述了抽头延迟线滤波器。
! u5 W, s, D- u: l/ Y: r
% B' N5 s3 M- e" H, S, Z在该等式中,a和b是滤波器系数的矢量,Na是反馈滤波器阶数,Nb是前馈滤波器阶数。 n是x的当前元素的索引。 输出y(n)是x和y的当前元素和先前元素的线性组合。 滤波函数使用指定的系数向量a和b来过滤输入数据x。
Moving-Average Filter of Traffic Data
M" x9 M' t, P! a滤波器功能是实现移动平均滤波器的一种方法,这是一种常见的数据平滑技术。
" |, ~5 t; u5 E3 a; c2 J% H1 ?) KThe following difference equation describes a filter that averages time-dependent data with respect to the current hour and the three previous hours of data.
(以下差分方程描述了一个过滤器,它根据当前小时和前三个小时的数据平均时间相关数据。)
导入描述流量随时间变化的数据,并将第一列车辆计数分配给向量x。
; u7 p* u) V9 ~6 U. O" {5 M& f9 q" X$ I( G, G
clc' X. M8 |& K+ h' ]4 j- o
+ l& o3 Z0 c r \ P
0 V! z5 K/ l% U6 ]" Y
" r1 y D, p% n' ]$ {( w- Tclear
% g+ {7 i0 ^7 s
: l0 i( c, t9 k7 i- `4 a) o( ~) d2 N
2 x& l# R) U( K/ e+ e/ E# R
close all
5 v$ o8 X& N0 v+ p" h
! S" t: z$ l( i* K3 K - : o n+ K0 ?! `. z/ y
. J& j! I! J0 u
6 r/ s2 x9 `5 Q& Q i$ D
0 ?; c# c# [0 F
9 a% P8 l2 @0 l% @4 {* X/ g* `4 @) q {' @" a0 {
% Import data that describes traffic flow over time, and assign the first column of vehicle counts to the vector x.
0 J* S+ h& h0 b, F& a9 A+ M8 f( ^% i: R3 g7 h
& R- K2 _+ m5 X7 Z8 P7 y6 _' t4 D% x$ _4 S. O; s! ^! y5 ^
load count.dat9 [ Y" l' r# D2 v- x& Q
, a' L7 E2 H! Q2 i* H# i7 u, |
7 ^ X, b: Y/ A4 N# D
, p3 ~5 y1 t' E# v3 ax = count(:,1);9 ^8 B! b. @( r% r
8 h1 L' t4 p3 z- - P' K: L$ F& d& `
: s7 [3 u) i& {. z- _; S# Y! d% ?4 U( _' E
1 ?+ `$ R" e7 v3 |. ^/ K5 V - " q! h8 ^4 M3 _& X* u0 `
& [" B8 ~( S$ _/ v# s: J% Create the filter coefficient vectors.
! D; v3 i% Z7 @- \5 t1 A3 _/ U) T# Z' G6 ]8 Y4 o
q5 a' {) d5 X2 Y4 x' [$ n- |9 z" ^ _9 ]0 F; O
a = 1;/ b g3 v3 B6 k. D! f. g6 |3 u4 b
8 G4 F7 \/ y4 Z1 O2 \9 [
- 9 h# \* M! S) T! i& q
}. Q9 H9 M x. ?( O4 cb = [1/4 1/4 1/4 1/4];
! J1 {6 l5 R$ @3 V$ {
* S! `0 X7 @ G+ ]
- l ^7 v* T1 F7 f/ l' g
" c& M t# F! C6 _% L& V0 A. b' L/ W$ C; y
+ c( J1 {& v4 X6 }! b' O! G
D$ X) Y& d: Y# k* s8 k- f
- A. ]0 X6 {9 Z6 n7 ?% Compute the 4-hour moving average of the data, and plot both the original data and the filtered data.9 U0 g. T8 H# {" l! V0 R
4 ]- p$ B, _: N) Y+ p/ _
- |' T+ U1 u7 y1 W! x w* b* y9 f4 V: ?& b/ T( G i
y = filter(b,a,x);
0 K, C/ n# `4 R' Y" z3 f- p$ E& w8 k# u4 Q* m1 [
- 2 `7 e, H+ b- z- j: b* C
, N$ D/ k2 D( {" V
$ }1 l4 d+ g. D# e' a2 \2 U
1 ^" V; T. F* n5 E
3 W, @) x8 b- {3 ^2 T, E- \+ _2 `% b8 I( D" g C
t = 1:length(x);
8 h( a' f) h9 l/ {
# u) c0 [3 J9 G/ d- n. D
u5 }* Q6 G' S% | @3 c4 _! Y, A" f/ }5 @; u* u# m% F
plot(t,x,'--',t,y,'-')
) l. Z8 ~% A" S& M$ c# c4 z$ \* b. W/ L' w2 `$ M2 K
$ r. [1 O4 v M9 P
$ _ |. B, i+ m. T( V4 jlegend('Original Data','Filtered Data')# e2 ] a) |& @, b; W0 [# O+ {
: h! t `) |3 F- ( F2 }5 W% m: s
+ j2 Q: \9 b% o- [& j
( o: t3 u `' _9 ^/ E
; l9 C, p4 f' l6 p$ A5 N* f
, S5 K! o, T7 }& L& l
Modify Amplitude of Data% ]2 C1 ?- S& V Q* P8 J0 s
This example shows how to modify the amplitude of a vector of data by applying a transfer function.' W- l. D6 f2 W* S
In digital signal processing, filters are often represented by a transfer function. The Z-transform of the difference equation 此示例显示如何通过应用传递函数来修改数据矢量的幅度。
0 g7 K0 J; T! l在数字信号处理中,滤波器通常由传递函数表示。 差分方程的Z变换
3 \) \: Z& W/ i) y$ s, k# @9 r1 n
$ |, k) | y& [4 D3 p5 R
is the following transfer function.
Use the transfer function
to modify the amplitude of the data in count.dat. - 0 X; L# M- H, q, n0 h
& P4 }1 V9 @; S2 n% ~* _8 B5 S( T
clc! f/ G5 ~& U7 t# B3 W; U
' X3 h6 p! i4 @2 q4 _ - ' I J' Z: ]2 N; G2 q
) y1 x# |2 E: e$ m1 z& o& S
clear
" {: p. ?8 P& a8 r; x9 D5 T( t: w1 j- t0 C5 B1 Y/ I
- ) D. e+ Q! Q* i6 s6 P
7 q. m8 h% |7 t9 L, p; h
close all, g J9 _! e/ l: _1 }8 m
. U8 n4 Q! I) `) s$ h9 U - 4 d8 i" t$ k( @# }3 T' P' Q
( a: o0 o. \: _/ T7 a: j
. ], `) U5 `; _" M% N6 g3 @% [. F7 ]- z7 R
- % f( l( \6 K5 m8 v8 j6 @0 {
8 J, t; R! c% m* U4 x
% Load the data and assign the first column to the vector x.
8 l5 }9 t; z3 `9 H' {7 q* z1 ^( J0 y5 s! z
* g* f: |! b7 [7 b# |! t& X
% G; l" z1 N. `) P. Iload count.dat
2 ~( J7 w5 M! F d% q0 L, S& P5 R; }9 s) m
4 D, _' B$ W: d$ n V+ u) S- ~0 j: M* i6 s& f) l& a$ e
x = count(:,1);# q( M( ?4 o1 n7 S. L/ s, P: b$ B3 ]; ?
. d# J$ M$ j$ ~6 B' B' g) E& c- 8 ^) q) d! k- V) ?% R
2 J" x3 W% U6 W4 P4 Z) E1 b9 x3 `; B, b; L2 j# U8 D! M
! p9 j% F0 w8 `+ x0 D
2 e! R2 T2 \% k
) K4 ^/ ]; ~3 J* `/ a: I% Create the filter coefficient vectors according to the transfer function ./ V* |1 F) H4 c. U7 u& m
8 F/ Y# x' g( s6 z0 f0 Q8 \. a! l
) Q$ Y/ X) {1 E6 m2 F9 m# w! i
6 F9 ]2 K5 g' sa = [1 0.2];
: A$ d) c7 n% `+ o" H9 Q! m! G
2 v9 k1 `! E+ H5 M! j
* d' A6 g: }$ i' }* y. l5 G. b% O0 ]7 T6 @6 ^0 H& o0 j: ?
b = [2 3];5 j& O% B6 W. M. I$ H5 D
+ ` U6 v7 s' B- S' a+ T
- ' {6 F) h" N+ Y8 n0 j* ]
7 C% m6 |& }* B, x
! C( i- L2 y1 v- l0 O* a, ?0 v
+ a; K! n4 \* y
r: f0 H! N, p. d4 p( J* y2 S
0 g8 c7 e, T: G4 M& V2 t X% Compute the filtered data, and plot both the original data and the filtered data. This filter primarily modifies the amplitude of the original data.2 z; \. S& G% k" G* Z
# t9 ]; A( n: T R/ W2 R
+ F0 a& n& i, R( ]4 D
+ {; J8 ~5 U1 s( Iy = filter(b,a,x);2 `4 L2 B, u; j# _; R9 y
5 ~0 ^2 c* L, L! d
- ) Z* K. F# u6 F, O9 D1 L7 n+ ~
7 U1 B" J- j: m2 m. {( f$ h1 E0 F* d, v: x' t3 f# e8 t& g
5 V2 o V1 }, k - , g& { U: Q# J5 I
4 v. _7 y$ r3 D# k& Y' f! z% d- _
t = 1:length(x);
) j( C( F) Z- D$ {0 v& E4 t' a' ~+ }' o; w1 F0 A8 l% Q
) E3 z6 \8 G( s& S" l3 I& H) @
( }8 u$ |) r( k4 rplot(t,x,'--',t,y,'-')
# h2 s# {: W( V0 t! F5 V
- d: @% o6 P& u4 u, f% x. W' b+ ?, P
' J1 Q m. r% _
Z. o" U& ]& B# Dlegend('Original Data','Filtered Data')
+ f& Y' \) ]4 T% P3 J: O5 c. m k6 |
) q' k( ^$ w6 S( j( I, M- 3 [; C. L5 q3 ^" o# C
# L( `8 @0 R$ W1 V4 \8 H) z# o5 x6 E
% Y+ p1 [ ]. A) n/ o! m
- w, v( g' p6 \' X$ X! z ]: B
& Z0 ]& y# @" f/ n6 {/ K- u8 u. V, j# ]% h9 }- q% i
" A( W' C: p0 _' z
|