|
|
方法一:
1 }* z3 }) R8 B7 K先对曲线方程(x+y)^2*h/(G*L)]+(b+0.07*h)*(x+y)/L-0.85*x+0.07*G*b/L=0两侧同时对x求导5 r& u- ]3 G. H5 ~: ]8 D- s
得到x,y(x),y'(x)的关系,并求出y'(x) = F( x,y(x) )的表达式( e( x' c& ?% b6 E, v
然后将切线通过点的坐标(x0,y0)带入联立方程组中5 L$ P' E' x; R. a9 v
(y0 - y)/(x0 - x) == y'(x) 即 (y0 - y)/(x0 - x) == F( x,y ),几何意义是,通过已知点(x0,y0)以及曲线上一点(x,y)的直线的斜率是曲线在该点处的导数& U0 c/ B' c# w. R, p, U
(x+y)^2*h/(G*L)]+(b+0.07*h)*(x+y)/L-0.85*x+0.07*G*b/L == 0,几何意义是,点(x,y)在曲线上( e% ]5 X7 T1 M
联立方程组求解,可以求得两个切点
4 v+ Z% u2 _, c. C(7203/4 + (136073*sqrt(7/374))/8, -(1715/4) + (50519*sqrt(7/374))/8)与, `+ {+ N% x [* x3 \
(7203/4 - (136073*sqrt(7/374))/8, -(1715/4) - (50519*sqrt(7/374))/8)/ C; }3 \. Q5 e- ?1 ^' v% Z. |" i7 K
数值解即(4127.74, 435.179)与(-526.244, -1292.68) |
|