找回密码
 注册
关于网站域名变更的通知
查看: 419|回复: 1
打印 上一主题 下一主题

NSGA2算法MATLAB

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2020-5-20 10:18 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
那个NSGA2的算法不具有普遍性,下面参考课国外的课题小组的代码重新修改了内部冗余内容,使之能够自定义优化函数。
% t5 v8 B4 T: E* \ 6 G" L; O' x- v& @! Q0 A

$ V( d' L8 _5 ZNSGA2的过程为:3 j  X6 O5 ~  @8 V$ ~, P4 S
9 @& O. B$ d0 S1 a7 {2 D
1、随机产生一个初始父代Po,在此基础上采用二元锦标赛选择、交叉和变异操作产生子代Qo, Po 和Qo群体规模均为N: P8 }$ p' s  k0 m- A

/ W% [* s( ~( l0 d2、将Pt和Qt并入到Rt中(初始时t=0),对Rt进行快速非支配解排序,构造其所有不同等级的非支配解集F1、F2……..
- a3 u. J" r9 }  P: j
# Q! }1 e2 J5 @* W& e' Z3、按照需要计算Fi中所有个体的拥挤距离,并根据拥挤比较运算符构造Pt+1,直至Pt+1规模为N,图中的Fi为F3. @" B3 d7 A7 q7 W

: d9 J- ^; C0 m* Y6 d4 c下面是完整版的代码:
! [- `3 |, J/ Z4 Z
" l" N9 O1 h" b0 `①nsga2-optimization.m' e) _& B' ~( n  P
4 ~; |' d& i. Y5 K7 X" Q" K4 R
function nsga_2_optimization* f! V! ]+ @6 o  v+ t
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
, c0 E) K3 a1 m- Z& q$ q- K" y%此处可以更改% b) R+ ~0 i: Z7 t! Q
%更多机器学习内容请访问omegaxyz.com: o) G: f) V. \
pop = 500; %种群数量: U2 P1 P* Z/ F5 k
gen = 500; %迭代次数
: p7 a+ F* Z2 NM = 2; %目标数量, W" g2 D3 C' h2 o. N0 O  ^
V = 30; %维度( I$ t2 `" u* s% C* E. T" E$ R! w
min_range = zeros(1, V); %下界
: p" P( V2 d& \7 ^' R; s1 Imax_range = ones(1,V); %上界
. w3 X$ o+ Q" A$ L6 `% F- P%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%( X1 Z- k- i, B' u
chromosome = initialize_variables(pop, M, V, min_range, max_range);
% R8 @# c" I4 B2 Y0 w$ Fchromosome = non_domination_sort_mod(chromosome, M, V);# s& n% ?) w8 Z: E! i
' F9 I$ H- B+ W  M* T
for i = 1 : gen& m4 j' e) c# ]6 }1 k
    pool = round(pop/2);
- [9 |* j# ?: A$ a. ~+ t9 \0 T    tour = 2;1 D4 t$ z  k) P3 m( Y* i) H+ t
    parent_chromosome = tournament_selection(chromosome, pool, tour);0 H3 o) l/ ^1 n1 S. W3 R
    mu = 20;
; c% T6 M* B! j& T% w4 \7 a    mum = 20;5 H1 G" ]' d+ R" i2 C: l
    offspring_chromosome = genetic_operator(parent_chromosome,M, V, mu, mum, min_range, max_range);0 j) `# x7 m5 i1 Z/ j7 D5 h4 q& U
    [main_pop,~] = size(chromosome);
1 h- ?" L' Z7 y    [offspring_pop,~] = size(offspring_chromosome);
4 Q; `8 @  Y0 X. X- O( ]" a    clear temp1 B% f& K9 y3 \
    intermediate_chromosome(1:main_pop,:) = chromosome;
  ]1 [: P0 t/ n8 T/ I( K& A    intermediate_chromosome(main_pop + 1 : main_pop + offspring_pop,1 : M+V) = offspring_chromosome;
9 r" p& U1 A4 x5 o& n& c& J    intermediate_chromosome = non_domination_sort_mod(intermediate_chromosome, M, V);
( Z& G4 }4 j, _    chromosome = replace_chromosome(intermediate_chromosome, M, V, pop);
' E9 @) F! f5 h  w    if ~mod(i,100)
2 P  U1 T" {2 b4 R2 u        clc;1 ^1 N) P3 ~% b( c3 l
        fprintf('%d generations completed\n',i);8 Y- o5 Q; a0 P& a* Z
    end) Q8 U& p, x5 v$ V& _" _8 N
end4 v% `9 r3 N8 y, n8 G
7 S8 j' [! U# @& m
if M == 2
  e! z0 G; S  n. `: R    plot(chromosome(:,V + 1),chromosome(:,V + 2),'*');
0 e4 P) [* T$ T. G    xlabel('f_1'); ylabel('f_2');
- _' c( L  x$ k! `* B8 Q7 m    title('Pareto Optimal Front');
1 a% G  f0 n9 `6 \3 @; Celseif M == 3
& d2 f3 f' b% @. }5 [/ P9 G3 M    plot3(chromosome(:,V + 1),chromosome(:,V + 2),chromosome(:,V + 3),'*');
$ e; k8 J4 \8 H/ Q    xlabel('f_1'); ylabel('f_2'); zlabel('f_3');
3 P9 N# @' p4 g6 I% _6 M% n    title('Pareto Optimal SuRFace');
; j; }8 q9 v# \( _0 n7 yend
& R+ A, ]9 h" c% r# Y/ ]( S1 A* O
8 W" J2 S. o! p7 N' X. Z1 B; Z
4 P8 n7 [7 O/ r, W3 K②initialize_variables.m
" Z3 n' j6 o+ N6 d2 w- k6 z2 b( d0 c- i% Y* o( R
function f = initialize_variables(N, M, V, min_range, max_range)$ {0 U; a3 i2 b& o  G1 a; @
min = min_range;
1 u4 Z3 i+ A+ _8 p3 ~  E( Cmax = max_range;% l& ]- K, O" c' \) n
K = M + V;
- j8 W; ~# G* cfor i = 1 : N
5 F* T8 {) R0 H. h) s! k8 ~$ I    for j = 1 : V
: @$ T/ J) A- m3 e        f(i,j) = min(j) + (max(j) - min(j))*rand(1);
* m' J, Z! d5 R" ]! E    end9 `5 V5 }* E2 e+ r5 P5 ~$ C* O
    f(i,V + 1: K) = evaluate_objective(f(i,:), M, V);
. v3 d8 x; u: Q3 S8 a) Y' wend
' t" T7 g; G" x* L
, r) Y- s  c* P+ C4 d2 O
( {, d# S& O, d% c* [. ^# n/ K1 Y0 a③non_domination_sort_mod.m" ^  k+ |, F) V: e

8 a  ~2 o6 v. \function f = non_domination_sort_mod(x, M, V)3 j7 c8 W; ~" v2 m
[N, ~] = size(x);& G7 n3 _. f: K. d6 b  P1 [
clear m
4 Y5 p1 e% ]& }, D  A) s" @6 [front = 1;
& A* V$ i$ i' p5 |' L, ?" |6 WF(front).f = [];
! ^5 Y3 n1 z" r1 d9 ?- gindividual = [];& O4 Q9 w# g' d; y4 v2 J" J
/ T) x5 k: {  T3 O
for i = 1 : N
/ O. X! m/ c5 G  V    individual(i).n = 0;: p" U" L1 M) K6 E3 m/ L
    individual(i).p = [];
7 m; B6 j; i" B4 e1 h: D1 p1 M    for j = 1 : N$ W" ~% s0 w0 @
        dom_less = 0;
. W: ~2 p; O2 D% X( i( u8 J- y        dom_equal = 0;
, t& ?0 O- q& e2 i' R! g& G6 G; T* b        dom_more = 0;* q, f5 r# M5 Z. P8 p+ I. o
        for k = 1 : M: Z. V7 M" M: R) u; k2 `2 f
            if (x(i,V + k) < x(j,V + k))4 x9 a1 l7 e+ [
                dom_less = dom_less + 1;2 f8 T  E  \; M) H/ q
            elseif (x(i,V + k) == x(j,V + k))5 I$ V" Z! a# S3 y3 {6 H
                dom_equal = dom_equal + 1;" j; i1 ]/ y5 t+ F8 o! e& y! Y" @8 b
            else
( ]& S/ M) f9 O: r" B; }0 y' Y$ g/ Q                dom_more = dom_more + 1;5 m) m$ r# B9 P& R0 e8 \
            end
; P0 ^, T- T7 e5 W) v# C# t        end  N0 r! o& }! k
        if dom_less == 0 && dom_equal ~= M7 i# k* k. H! l, `
            individual(i).n = individual(i).n + 1;! ?3 E1 e/ M# B* E) W$ @* m
        elseif dom_more == 0 && dom_equal ~= M
1 \! Z! f  a0 V# W            individual(i).p = [individual(i).p j];
! t4 q0 x2 b3 c4 [        end0 z/ [- `9 ]& i1 A3 r0 T
    end   1 L; A  U5 E/ k
    if individual(i).n == 0$ q5 T8 k$ m7 j7 u% b
        x(i,M + V + 1) = 1;
$ X  @& V9 x0 L9 h/ L        F(front).f = [F(front).f i];8 r9 R9 u$ M2 a* z2 l- f# q( [5 p8 ~
    end* D: \, J$ k8 a3 x& ~% R+ E; M
end' b5 \; S7 P' x5 ^' m) }0 r

/ K. D& }) p( iwhile ~isempty(F(front).f)
  x$ R- y% r' E   Q = [];
( w9 u0 m  u& ]2 ^! M   for i = 1 : length(F(front).f)& e! v& H4 k3 L/ Y" |
       if ~isempty(individual(F(front).f(i)).p)- }( R$ C1 c1 O2 b% R8 {9 ?
            for j = 1 : length(individual(F(front).f(i)).p)
4 ~6 f$ ~! [( z2 j                individual(individual(F(front).f(i)).p(j)).n = ...
5 ]; G2 m" t+ s, I                    individual(individual(F(front).f(i)).p(j)).n - 1;
' a, B6 F4 a  h& o                if individual(individual(F(front).f(i)).p(j)).n == 0! Z2 ]7 G: E- p6 Q
                    x(individual(F(front).f(i)).p(j),M + V + 1) = ...# o2 w& p% `" N* V
                        front + 1;
. \5 ]3 F. x& {* K/ x                    Q = [Q individual(F(front).f(i)).p(j)];
) l5 j7 v/ ^! x, T# D. n; T                end# J: d) K- W3 c- I1 }" e
            end" Z5 p5 G( d5 t- y1 l! j
       end
+ H3 n- K! Y5 D9 D1 W9 w# Q   end
% z% Z" E) `: E) X5 Y0 C   front =  front + 1;
% u* M! j0 |0 s& n) l   F(front).f = Q;
% N% |3 u! z# b& u' J$ F" uend, U& M6 C- y# d9 A2 P$ J" x
# S9 [" O, m: {( Z- m9 [
[temp,index_of_fronts] = sort(x(:,M + V + 1));
# Y8 Z& J' ~* N) L' Lfor i = 1 : length(index_of_fronts)! a, K! b9 Q* n
    sorted_based_on_front(i,:) = x(index_of_fronts(i),:);
2 \- ~! B6 `3 b! Zend/ b' l  n. Y( c3 K% x4 n& a- G: K2 o, k
current_index = 0;
! @& G& Q# N: O' }3 s1 x. v# n; t( S. K
%% Crowding distance
6 `, l( X) \* K! }7 P; T3 {! I  A* B- Y0 b( |7 I$ J) ]' U8 O3 Y+ ^
for front = 1 : (length(F) - 1)
" _. ?( z0 _$ o& F+ a    distance = 0;
) t$ t: t* ?! V9 n5 }7 W2 W* Q1 Q7 t    y = [];
, k; M+ q2 U" R  W& t    previous_index = current_index + 1;
% F1 g; h8 Y/ ~    for i = 1 : length(F(front).f)7 g  ]7 p2 g9 y+ u+ k
        y(i,:) = sorted_based_on_front(current_index + i,:);) ^( H$ H6 o, |! w" O
    end
( x7 Z, {+ F# @: ~9 o9 ~    current_index = current_index + i;6 f( E. e+ I7 _& c5 @4 u
    sorted_based_on_objective = [];9 h' h+ ]  ~( l9 w  S# W% g
    for i = 1 : M
; i; e% y7 k2 |7 W        [sorted_based_on_objective, index_of_objectives] = ...
1 o( a7 O5 m) S+ v            sort(y(:,V + i));
) O  K: a1 {8 E3 N        sorted_based_on_objective = [];/ {1 j* x" ?7 ?" }6 }
        for j = 1 : length(index_of_objectives)
( A. U9 f9 X, K            sorted_based_on_objective(j,:) = y(index_of_objectives(j),:);' ]1 G) l0 |6 v7 U7 T6 w6 x* Y
        end
* b4 D1 E! O, S; D0 J$ V/ n. @$ W5 K        f_max = .... I% g4 @) l+ l, F" q
            sorted_based_on_objective(length(index_of_objectives), V + i);2 b" |$ D- \  p
        f_min = sorted_based_on_objective(1, V + i);
& p. K  a  f0 L        y(index_of_objectives(length(index_of_objectives)),M + V + 1 + i)...) U1 U2 g1 [) u* k$ @6 m* z
            = Inf;
2 R4 r* V/ r! |/ k8 P  n# \1 ]        y(index_of_objectives(1),M + V + 1 + i) = Inf;+ p* t; i4 V* O& ~6 u
         for j = 2 : length(index_of_objectives) - 1* z! f: C. u" }! X  |
            next_obj  = sorted_based_on_objective(j + 1,V + i);
" b6 Z' M  X4 E5 `; a1 g            previous_obj  = sorted_based_on_objective(j - 1,V + i);
9 O; ?9 Y: w$ J( I" c& n2 Y            if (f_max - f_min == 0)
* m; f" M( M& n$ w+ |                y(index_of_objectives(j),M + V + 1 + i) = Inf;
/ j( E8 {0 v: e# k  O; K            else
. p, s4 g, m" p! t/ s7 U                y(index_of_objectives(j),M + V + 1 + i) = ...
2 h; Y0 P. @  G4 v                     (next_obj - previous_obj)/(f_max - f_min);
/ z# Z, l4 E& B* D& _# [; h/ F* d            end
8 O+ Z$ K0 Y: _( g# [         end2 a7 u1 S4 ]: [* x5 z
    end7 d# s2 o; @$ U) P
    distance = [];
2 T  E. ^7 M. a    distance(:,1) = zeros(length(F(front).f),1);
# r: X1 y- Y- p4 M/ P    for i = 1 : M0 Z2 y  R6 _! ?: E9 o
        distance(:,1) = distance(:,1) + y(:,M + V + 1 + i);6 [7 h7 P# b0 t8 A* n" d( D
    end
  T- d7 M* o; Y& c6 g    y(:,M + V + 2) = distance;
: i2 r" O) o2 }1 K& ~# h! T    y = y(:,1 : M + V + 2);* L" {$ b: Z+ W$ {8 w8 b
    z(previous_index:current_index,:) = y;! z! \6 n; F* K! O% z
end
, @/ B$ B: d; ]: }) Af = z();
' G1 ]; \4 D4 R* n4 n! O+ E& P. R/ t
+ o9 B  G7 u. K9 d' n( i
④tournament_selection.m
( d/ q& O9 G( @7 ^1 r+ U) }" w) [1 D6 ~4 e) T+ s5 |0 E% r" p8 J
function f = tournament_selection(chromosome, pool_size, tour_size)7 F' ~9 q& X" [3 Y
[pop, variables] = size(chromosome);! l* r& A# q$ o4 P5 K+ T% K. Q
rank = variables - 1;
4 N1 B* G' ]( Hdistance = variables;/ p/ r! c+ \* Y9 @0 W
for i = 1 : pool_size
; k  i5 t& c0 Z% @" p9 A* w' T    for j = 1 : tour_size
! _; \, W' _0 H" E& A        candidate(j) = round(pop*rand(1));
1 G1 `  a% X, O" O' M, V+ ^        if candidate(j) == 00 a8 b4 k- S2 p+ e/ W. B5 t) ?
            candidate(j) = 1;
- i: Y4 N7 H9 O: W* _+ F        end3 `% T( C+ _; G" o- X, X* K& t
        if j > 1  e- r) N9 J$ p- C  k- r
            while ~isempty(find(candidate(1 : j - 1) == candidate(j)))3 S; S% o  u6 w! _6 `6 Q
                candidate(j) = round(pop*rand(1));6 J/ @: c* I, m3 M. O& t5 G3 v
                if candidate(j) == 0* Q  G* x% j, M+ T6 f% M* P/ V
                    candidate(j) = 1;3 L/ }$ ~3 g0 {. G$ I6 K
                end6 y* g5 T  u/ O2 @' ?6 z
            end0 k/ X4 m7 z" o9 t6 d" \# y2 u- J
        end! J- ?+ P+ s, b- D
    end. T' _5 k* s6 C! w$ P1 y
    for j = 1 : tour_size* C% [; W/ c! E5 M& S1 _1 ]
        c_obj_rank(j) = chromosome(candidate(j),rank);
9 [# S' h  m# t: l        c_obj_distance(j) = chromosome(candidate(j),distance);0 L1 D, H$ Q9 e7 i
    end
/ P0 B" r. V3 Y. O" x/ D5 H    min_candidate = ...
" z3 Y( R0 n# ^* p        find(c_obj_rank == min(c_obj_rank));7 @( i% u, c5 k
    if length(min_candidate) ~= 1
) u! }3 c/ C# _& {. f8 B) T, ^        max_candidate = ...8 y9 p3 J- L( E
        find(c_obj_distance(min_candidate) == max(c_obj_distance(min_candidate)));
1 ~3 A% d3 F! p) Q3 H        if length(max_candidate) ~= 1
  Y5 n* \% s0 M* Y& h            max_candidate = max_candidate(1);7 J3 F5 l' \$ C( T4 e
        end4 B& U# B8 I9 S8 o) w/ j% [
        f(i,:) = chromosome(candidate(min_candidate(max_candidate)),:);
; A& [( `( Y; q5 T3 ]% ?    else4 }, r+ P! i) W9 a  ]) R! F3 [
        f(i,:) = chromosome(candidate(min_candidate(1)),:);! j: e; ^1 M, I
    end* R! l, s2 |  T
end1 R. {) Q+ O, d' w% \! w

1 s: B2 r: s1 j  T5 q2 ?0 R9 y4 `+ k
⑤genetic_operator.m
! ^) u0 S+ ^( C2 u# H# T( c- x
% m- P) I- @2 y) _) }function f  = genetic_operator(parent_chromosome, M, V, mu, mum, l_limit, u_limit)
6 m4 e, n4 l2 g7 J8 z2 O; J. j2 H[N,m] = size(parent_chromosome);9 K. o0 \/ v) e2 V0 p
0 A6 d* T# b4 E( m
clear m
- r& ^- X" z& y2 }5 r1 n) ^- Sp = 1;
$ _  v3 z- ?/ p, i5 X" Uwas_crossover = 0;
6 m: o  j" {8 D' }6 y9 z/ pwas_mutation = 0;4 L; S$ x3 ^3 ~2 g( c  r' c

. V/ S+ X* E- B( w4 b0 s
0 U8 F% a4 q0 ]: o, s( L' N8 Xfor i = 1 : N$ `+ ^  Y) b9 L0 e/ x7 {: r
    % With 90 % probability perform crossover
# Z9 ]4 x0 W/ ?/ v7 @; P% m    if rand(1) < 0.93 p5 ]5 ]$ R! x9 c( m7 C
        % Initialize the children to be null vector.' |1 t4 n7 C7 z0 ^' n
        child_1 = [];; g& B* U( t. s/ H& q
        child_2 = [];
2 i3 \: M' Q3 W( b! P+ q        % Select the first parent
0 L; j7 J. c9 J        parent_1 = round(N*rand(1));) l( Z  e( n& o/ i
        if parent_1 < 1, `. s0 @1 v6 N# X
            parent_1 = 1;
0 ~; Z+ L% n: D        end
# ]4 l8 d* }! {' C- L0 R        % Select the second parent
) p8 G& i" T! @$ J+ h7 K- u% _        parent_2 = round(N*rand(1));
( e5 L7 F! h6 i' @1 p        if parent_2 < 1
( z) \/ p$ x4 E; E$ g" x. x            parent_2 = 1;
& f' F  u$ g. x2 i+ {( s        end
) J0 T0 y) b* e- ^        % Make sure both the parents are not the same. # i2 r9 u2 P$ {9 g; A
        while isequal(parent_chromosome(parent_1,:),parent_chromosome(parent_2,:))
9 ^, d$ \! u! j7 O% z; L- x( H. M            parent_2 = round(N*rand(1));7 I0 j- |, u0 b6 X! ^  D2 i6 m
            if parent_2 < 1
) I: K' C. u* c: J& H                parent_2 = 1;
% n9 l3 L! e/ s2 a$ Q5 ?5 Q: |            end7 ~) R& O0 W! B8 Q( L7 t3 V
        end
# w- `+ k( \+ G$ V2 J' E        % Get the chromosome information for each randomnly selected$ v' o7 V$ A$ r+ A7 t$ n* |
        % parents( ]: y* `/ i3 F. m: ~7 x
        parent_1 = parent_chromosome(parent_1,:);$ M% E$ g" W  e1 W- d. c
        parent_2 = parent_chromosome(parent_2,:);0 s) n0 {* j! F5 s; s+ a
        % Perform corssover for each decision variable in the chromosome.
% d( g: z  {% O8 h' w  X) }+ B        for j = 1 : V
% n; J" y+ R6 r  a            % SBX (Simulated Binary Crossover).7 G9 w4 C: x3 u8 v* c4 P+ X6 ?% Z
            % For more information about SBX refer the enclosed pdf file.4 \) j7 Z3 l/ g
            % Generate a random number
1 j8 _# s# S* h. y8 C3 h" |            u(j) = rand(1);
6 \7 X6 \' H4 G# B% S2 \" M            if u(j) <= 0.58 H! d$ O4 d+ r7 p7 J; f" c
                bq(j) = (2*u(j))^(1/(mu+1));
* B( o5 W! I0 X, a            else7 e, H6 z! Z1 K
                bq(j) = (1/(2*(1 - u(j))))^(1/(mu+1));
8 C: r) o" V( U) _' ^            end
7 Y, ~1 w( U' l4 X            % Generate the jth element of first child
5 _- `, j  H; H' M: n5 ]( K4 V( C            child_1(j) = ...7 x; q. }# `$ n+ E
                0.5*(((1 + bq(j))*parent_1(j)) + (1 - bq(j))*parent_2(j));- r" q, [" `# n) t
            % Generate the jth element of second child
$ [3 p- }  D$ R5 o, K; x            child_2(j) = ...
# y/ p$ r1 `$ ]' m5 n                0.5*(((1 - bq(j))*parent_1(j)) + (1 + bq(j))*parent_2(j));
6 ]4 F6 n2 m: @8 O1 |9 _' h# h            % Make sure that the generated element is within the specified
5 ]% M+ r, Y3 W            % decision space else set it to the appropriate extrema.
7 ?' e4 F! e- t6 o. Z            if child_1(j) > u_limit(j)
& x6 J* ?7 k3 o9 Y% F                child_1(j) = u_limit(j);
$ b% ^- r& |/ _. m& V            elseif child_1(j) < l_limit(j)3 K! k" p- u0 K8 R: x1 v, J3 p. |( p
                child_1(j) = l_limit(j);. S9 L0 e9 \: A3 `! m: i
            end
3 D8 U4 c! Y) Q& v+ S* y0 Z" ]            if child_2(j) > u_limit(j)
7 ?6 `4 }0 k0 y* ?8 [: H7 D: s* g                child_2(j) = u_limit(j);/ X) T1 C0 |; F
            elseif child_2(j) < l_limit(j)) `  r: d6 q3 M6 t. G
                child_2(j) = l_limit(j);
( N+ Y# L' R" B9 A6 P% ]6 U& J            end
; W3 |" g0 j/ }; F  A: @        end
* q  j, I9 M3 S" @. M. y: W8 _        child_1(:,V + 1: M + V) = evaluate_objective(child_1, M, V);/ s& w& Q) D! I2 A  M
        child_2(:,V + 1: M + V) = evaluate_objective(child_2, M, V);
: c6 ~  a8 j/ N% r& q, n        was_crossover = 1;
+ m( s) ~: }+ e6 p- j  h        was_mutation = 0;
3 o3 A2 _! ?/ G5 y: p' M    % With 10 % probability perform mutation. Mutation is based on2 _3 d+ G1 f4 q. h# [
    % polynomial mutation.
6 O( n0 g6 Q  q) {1 N# \  E& L    else
( j2 L+ _2 N9 m! ~        % Select at random the parent.
4 p+ g. z( r* l- f+ d/ b6 S0 P        parent_3 = round(N*rand(1));
0 h1 K* G! \' H/ C: g0 L, c        if parent_3 < 1
: b" v! j3 ?* h+ Q( n$ d            parent_3 = 1;8 ?$ O0 x) g# {! i; U* Q! l
        end
% ~" [, ~$ p% g: _% m        % Get the chromosome information for the randomnly selected parent.% c$ X7 m9 \+ k$ v( f; o6 q
        child_3 = parent_chromosome(parent_3,:);/ z. O: y2 s& A' y( j0 ?$ q
        % Perform mutation on eact element of the selected parent.
. @5 O# n/ k* R3 e: H; z        for j = 1 : V2 o9 ^/ c; S  h& R( f+ t
           r(j) = rand(1);
, K( c$ l: g4 L9 e1 b' L  K/ H  e5 X           if r(j) < 0.5
" d1 V1 |5 W7 _3 y               delta(j) = (2*r(j))^(1/(mum+1)) - 1;
4 s8 G5 |2 k' c2 c. W           else
% J! g; M. k" Y" P3 Y$ s               delta(j) = 1 - (2*(1 - r(j)))^(1/(mum+1));% A5 g9 \% j6 ~
           end
0 q% }! ]9 O5 v, z% X. O           % Generate the corresponding child element.; f* D& k; Y5 D/ n+ a; B  h3 [! Z8 g
           child_3(j) = child_3(j) + delta(j);+ v/ |- d3 T$ w5 ^9 |
           % Make sure that the generated element is within the decision6 C; g* S" X; [) Z& g* P  Z. ~
           % space.
  I3 z9 Y* X! N7 @. a! J           if child_3(j) > u_limit(j); y' F9 S+ W, z% j) H3 ]
               child_3(j) = u_limit(j);' \* c' H; v" ^& G
           elseif child_3(j) < l_limit(j)# b1 R0 ]/ f; ]; l
               child_3(j) = l_limit(j);& o& E8 ]3 @/ q) ]8 Z) h; f# b5 `
           end1 S: G; i* K' K7 m
        end( A7 M) \1 v! Z( s; o: W3 `
        child_3(:,V + 1: M + V) = evaluate_objective(child_3, M, V);$ P; T5 g$ L! x4 S" z
        % Set the mutation flag
- u7 r( R& J* D# E+ Z        was_mutation = 1;& K+ b8 W' M/ W/ ~( ?, j0 S
        was_crossover = 0;, A0 N# p8 U$ j8 v
    end$ [; M+ u( ]( g! A; x5 T; R( w+ n
    if was_crossover
7 `+ B8 d  f$ @" h1 h) k: H        child(p,:) = child_1;
/ F: @3 p+ W! T, `        child(p+1,:) = child_2;
) B# ~: g1 k# k+ h        was_cossover = 0;' S* r- `3 \: M9 g1 f
        p = p + 2;3 r, a, q5 Z+ V/ s
    elseif was_mutation
  L* K4 @# L- H5 V        child(p,:) = child_3(1,1 : M + V);
6 J  N' V4 H$ c8 ^, `6 J4 T5 `        was_mutation = 0;1 A" ]$ d7 G& X& P
        p = p + 1;
" I+ e+ q/ Y% }6 E- t0 f, a+ U    end9 t( a6 B6 l: r$ M/ ?3 t
end/ N" o7 R! v# t' @# {
f = child;4 i8 W  ~5 W" Y
5 Y: O. F  }8 ~+ @

( b1 {) m" X( u- \⑥replace_chromosome.m
: U! M; N! S7 m  l; N
3 Y6 ]( Q/ l1 w8 o# [1 y# z8 @function f  = replace_chromosome(intermediate_chromosome, M, V,pop)
/ d& h# y$ j1 L1 f' }
: y& ~  N! b' l3 _# \: {( I, J1 n3 k& E% o- V% Z
[N, m] = size(intermediate_chromosome);; A: ^. l1 ]/ `
! U# l# C& t8 a# r% G0 [: _, d5 `7 i
% Get the index for the population sort based on the rank6 k' h7 r4 ~# T
[temp,index] = sort(intermediate_chromosome(:,M + V + 1));
4 |- J6 k1 K; l8 [& [: x9 [7 j. v2 g+ N8 G# I9 _
clear temp m
5 p" K( P  A, w  S' n, u4 V& W6 ^& `. Z/ T# C
% Now sort the individuals based on the index
4 F3 n, @3 ?9 Z7 Afor i = 1 : N
. R* [( S( [+ j! X  l    sorted_chromosome(i,:) = intermediate_chromosome(index(i),:);' |9 _) {3 n" s
end
! m" s( Q) @4 ~* B! \4 {; c' D" q
' r1 k  F! ]8 i: B* s: U' ~% Find the maximum rank in the current population
) v) I' v% K) K; V# ]# m+ Imax_rank = max(intermediate_chromosome(:,M + V + 1));4 T* s5 m8 }; w  H9 k- w9 e# t

3 z* Q6 W, \: \* E5 E# j% Start adding each front based on rank and crowing distance until the
5 J7 v, k! U: Y5 w7 F: f$ M% whole population is filled.$ x  Y( v8 X9 @" A" J7 O1 {3 v
previous_index = 0;# d+ H0 k% p. c+ t; i6 z
for i = 1 : max_rank( A& y( O$ u% K9 ]# X
    % Get the index for current rank i.e the last the last element in the
7 C0 r" i$ }  x6 L( t9 r3 V    % sorted_chromosome with rank i. 1 y" `# e' q( l: W
    current_index = max(find(sorted_chromosome(:,M + V + 1) == i));$ i4 u+ n/ |$ r/ @& P9 a6 w% w
    % Check to see if the population is filled if all the individuals with# ]# ^0 v& z0 W6 P6 t
    % rank i is added to the population.
; ]+ C" ~; B' O    if current_index > pop
% N" G' u4 D+ }4 c! O  \        % If so then find the number of individuals with in with current+ b$ |9 {/ k- a$ p3 a5 T0 R8 Y* G
        % rank i.3 n2 L$ A1 R* L" I6 f
        remaining = pop - previous_index;5 p' R6 m6 N- j+ z' L
        % Get information about the individuals in the current rank i.  k4 i% Y6 H; F* G; M4 _
        temp_pop = ...9 Y7 A7 Z) J% S6 c: Q* ?
            sorted_chromosome(previous_index + 1 : current_index, :);5 ?- D7 K' r$ B' J
        % Sort the individuals with rank i in the descending order based on& j4 ~8 x& Q. B: \/ d0 U
        % the crowding distance.5 Q& D, @7 e% |) s! B
        [temp_sort,temp_sort_index] = ...
7 |' t8 ]  s: C2 Y$ A, r            sort(temp_pop(:, M + V + 2),'descend');  @$ g* Y3 E3 h3 Q( ^
        % Start filling individuals into the population in descending order
9 y5 G2 o& b: Z  M7 c/ F        % until the population is filled.) T4 r. k+ R: T; c+ I% r! }0 h
        for j = 1 : remaining
( {* ^2 U% _6 F& Q            f(previous_index + j,:) = temp_pop(temp_sort_index(j),:);
1 c2 p0 R6 I( g0 {6 ^) B# `        end6 d% u, |8 l: x0 q4 B" W' b8 |
        return;
" U% F/ s6 J- r( w& e  S; m+ Y    elseif current_index < pop
( d: n6 J: o$ b4 L        % Add all the individuals with rank i into the population.! l+ }' u; \4 @) l6 L9 E
        f(previous_index + 1 : current_index, :) = .... V4 ~  E  A  |9 K. L% @/ j# {
            sorted_chromosome(previous_index + 1 : current_index, :);" }5 o% \; d6 f8 y  s
    else
5 n. l) H0 ^+ w! b" o' ?  O" J        % Add all the individuals with rank i into the population.7 s3 V( ]' }$ F8 e' D, J) _& u
        f(previous_index + 1 : current_index, :) = ...+ G5 F7 N! \8 `7 ?- P. d
            sorted_chromosome(previous_index + 1 : current_index, :);
9 k7 o  e4 n, V) c  o3 C% v        return;2 K4 v1 b  p3 O; D+ M2 p1 C& z: j
    end7 H- ?5 X* d* N& U7 @2 E- z0 c3 o
    % Get the index for the last added individual.
( b- C; k% ]2 z- h& D6 D    previous_index = current_index;( s! K0 e0 L/ |. P0 Y- R
end9 c6 I. |4 _% ]" m# n0 d
$ N$ Z6 [% p* f& e7 t# w9 q  {

+ r: R- a! P; T. z- C! @& L⑦自定义评价函数(我选用的ZDT1函数)- ?1 P; k+ ]$ ]" \- V4 k
+ t/ p' h2 y  E/ D" B+ J
function f = evaluate_objective(x, M, V)  i3 Y" d; }) O7 V  B6 S
f = [];8 b* \! G7 ^& ?; H
f(1) = x(1);' g8 O. r3 D( m# i
g = 1;4 ]6 p) N# @, m- o/ X
sum = 0;
2 R, L' B& S/ A4 L' @! [for i = 1:V
) y' |9 Y: v/ h. S9 r' U2 E% I- X    sum = sum + x(i);6 L3 B7 k$ l' w) T
end5 V1 C1 n0 P1 B
sum = sum + 9*(sum / (V-1));
$ S! }# D4 m# y; U# qg = g + sum;
' K2 H- a2 u5 \  Qf(2) = g * (1 - sqrt(x(1) / g));
0 _3 G/ v0 s' |& ]3 Tend
2 t7 z- U& v7 _0 y  Y) h! B6 n$ K) W- C: a

6 m( e$ Y6 q* O9 p, R5 Z1 q4 Z* }8 |500个种群运行500代的结果: . H/ b& W+ q! d0 e% `/ K
2 n8 a4 k# i3 l3 p

: N3 Q. L2 J. l, O: T) H) Z
  S, m) o, K& x& }( I, a8 Y# W# W1 V! z+ z
& K4 Z& Z% b! P' ^# I( Z3 t+ l
0 T' p; Q* E: v' D

该用户从未签到

2#
发表于 2020-5-20 13:09 | 只看该作者
NSGA2算法MATLAB
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-11-24 01:29 , Processed in 0.171875 second(s), 26 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表