|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
序列 x(n)的奇偶分解的公式为:) c8 U: h. M+ }3 ?5 f, y% x
/ S6 d( t# ~. [3 u: U
% p* R3 F$ _$ @, w( H2 J
0 L9 h7 s& V9 ^ B& R5 O5 ?% I" J+ z# p" N! i/ p% o! z
" g+ H k0 Y1 l5 E3 F; c" K: C* H编写一个序列 x(n) 的奇偶分解式 xe(n) 和 xo(n),需要考虑的问题是序列长度,下标的变化。. u& n f+ a: k3 ^
# q s: s( v* x8 d3 ]# S! ?# j2 D
这里必须做个声明,下面的程序中用到了前几篇博客中的几个函数,这里给贴出来:
& R) R/ n9 T& C9 g: k) U4 ^8 \
信号相加:* K7 a- R3 Q+ h, P- `
; t$ u2 h7 v! w+ @
function [y,n] = sigadd(x1,n1,x2,n2)" V7 f7 s0 ~' `0 a1 R
% implements y(n) = x1(n) + x2(n)3 \7 b0 Y3 e* |* F r! y% R
% [y,n] = sigadd(x1,n1,x2,n2): ^6 L& P- X0 }
%____________________________________
+ r6 B9 P4 E: n% y = sum sequence over n, which includes n1 and n2, ?% P% U- X3 W7 i# c6 s" I
% x1 = first sequence over n13 e+ i6 G( {' O
% x2 = second sequence over n2( n2 can be different from n1)" t+ u3 m1 Y" x* o
%
9 E) P* x* J. ?/ Bn = min( min(n1), min(n2) ):max( max(n1), max(n2) ); %duration of y(n)( l, S& a g, t# V' B
y1 = zeros(1,length(n)); y2 = y1; %initialization( l1 e! r- |' Q8 V" {& E
y1( find( ( n >= min(n1) )&( n <= max(n1) ) == 1 ) ) = x1; %x1 with duration of y1
2 G* A2 z4 R2 r# l y' J7 [y2( find( ( n >= min(n2) )&( n <= max(n2) ) == 1 ) ) = x2; %x2 with duration of y2
2 { A% I3 _# o% iy = y1 + y2;
3 z, B0 N: d! ]) W7 v
1 ~( k* {( ~0 r/ s- Y8 [$ [: S& d& P/ X; j+ m6 U- v; B7 A
信号移位:+ Y7 @5 y* U b3 f \) l
: U( O* P$ M# N
function [y,n] = sigshift(x,m,k)
% b4 {$ C8 {& J+ [1 I: r%implements y(n) = x(n - k)
+ J2 Z2 ?2 f/ M# l$ F, z$ q%_________________________* B& @ `- i- ^! Z9 v7 Z
%[y,n] = sigshift(x,m,k)
% _' d: \* w' U' O: O* o) \%+ i5 D& I! |7 ~% c6 r6 X6 ?% X7 B
n = m+k;
Q/ t6 q/ ~1 j0 a+ yy = x;
( _1 d% B5 Q0 x- N# p
! V( ~. g+ M$ K/ F- \
9 i8 ^5 {* F; X2 I% q1 g) |5 V0 Y单位阶跃序列:
, B& W$ k7 f3 L2 c$ A2 M2 T9 n# i* N2 |* d
function [x,n]=stepseq(n0,n1,n2);
: b( g0 n+ l$ l. X! Y% generate x(n) = u(n - n0); n1 <= n <= n29 y! P4 }) k6 }- M" {+ r, @" W
%_____________________________________________: L2 n" N+ y4 X6 n- Z; a# M8 Z% t
%[x,n] = stepseq(n0, n1, n2);, k8 I- F, @2 Z$ t: w
%
1 d* X" g7 o4 w: K/ [, zn = [n1:n2];
4 V9 T4 D) V8 ]2 x, ~2 I9 [. e* {x = [(n-n0) >= 0];
0 _9 @# l) Z+ z- h& Z% a5 y0 k
. t h' w2 r' T9 Y6 l" w9 l: D
# z v& H' q" m0 o# Y" ]6 l3 P下面给出函数程序:
5 w2 {' C# V3 w4 l% b# d2 z
: |0 F' L4 I. a) F9 k: S3 Dfunction [xe, xo, m] = evenodd(x, n) f2 Y; I& o8 E" U
% Real signal decomposition into even and odd parts
' W6 ^8 r6 v( @& K%__________________________________________________
$ P* `. u8 N( I2 ~9 C& x%[xe, xo, m] = evenodd(x, n)# w, M2 P2 w2 r; k
%; G+ { B) M3 A) l* }5 `3 M: K8 z7 _
if any( imag(x) )
- F; K4 h7 ?5 f3 b/ e7 D- L* T error('x is not a real sequence!');
9 @6 Z. f8 B8 ~0 o+ F* n: n7 send
& t! F" t& Z8 n4 W) r
8 f8 W% u) W/ d! f3 s- U3 i! J6 {' r% Ensure m of xe and xo
0 N, k2 Q' E1 k- K& n h8 dm = - fliplr(n);
+ S, k( e" C) t3 b8 q% lm1 = min([m,n]);
3 X& X3 W2 J" M" e: S% hm2 = max([m,n]);
1 v- D3 k/ z( h/ D2 u# Fm = m1:m2;5 v$ `6 R# ~- q( _. c1 G2 u$ g. y
3 }9 F+ X+ V. c6 |) _: S% Ensure x over m
+ f! O* _1 _1 Z6 b( Y! R. Knm = n(1) - m(1);
5 _9 X* S9 o/ K( In1 = 1:length(n);6 G1 y4 m* W! n
x1 = zeros(1,length(m)); % initialization
9 G/ n6 V$ x( K* |x1(nm + n1) = x;
' c" L: ?8 { e/ n! y$ m6 T) Rx = x1; % new x which enlarge index n& E& r1 x, N4 O: C& u, y4 t
5 f0 L1 t9 q4 K8 a" z
% xe and xo
3 N6 `, \# y' |: jxe = 0.5*(x + fliplr(x));# p @- @+ G2 K) d
xo = 0.5*(x - fliplr(x));) `. F! s; q6 G$ d. i9 P$ n9 i' V
# P; ~2 _) b5 P1 R; O1 g
" x- P3 z7 V$ B0 g序列和及其位置分别装入 x 和 n 数组。首先确认是否已知序列是实序列并在m数组中确定偶部和奇部分量的位置,最后将所得奇偶分量存入xe和xo数组中。
/ c: W1 K! w1 k& b u
9 U, M% y" m. M/ r4 b下面以一个实例来验证上述函数:
/ n! [$ n7 `* q- h# A6 o& D- b0 i- y
w2 F% H; I m. p' s( {, q
/ I2 V1 T6 t1 D, [2 h4 _* r将x(n)分解为奇偶分量。
5 }2 h. s8 h% ^ Q2 U
% f% X: O3 K7 u8 ~) r/ sclc
4 j, n4 z8 ^: Tclear
2 M4 f7 s7 h8 Y/ p" i& D. Bclose all3 c! v* ^5 @! I# L# d' t# o& B# A* T
8 D& a, f1 T& q* n! e5 c7 O& w
n = 0:10;5 w8 ]! @3 [9 q$ S% u
x = stepseq(0,0,10) - stepseq(10,0,10);
, n2 i7 N' k3 U% p[xe, xo, m] = evenodd(x,n);
: D4 D7 c1 Z: m4 v: ?% V! c" q B. Q9 C$ Q a) j% ^
subplot(2,2,1);3 R# c5 r# r% {8 w5 r z
stem(n,x,'filled');
5 A1 h2 ?7 E1 `. {& Y+ y' stitle('Rectangular pulse');
. | A k4 ]) Y* S5 y; k) }xlabel('n');ylabel('x(n)');
" Y4 D1 T$ \& l6 R4 iaxis([-10,10,0,1.2]);
' x! B5 c& g* q2 D9 m% F/ z
! t+ S- ?; ?2 ?8 f3 bsubplot(2,2,2);8 l. F" _6 H$ q% p4 v7 _* q6 {9 g
stem(m,xe,'filled'); ?4 W4 s, p. ~3 A
title('Even part'); }* l1 m5 O0 ?* v* C
xlabel('n');ylabel('xe(n)');% A3 d( h5 T9 E
axis([-10,10,0,1.2]);
+ X# E7 Y) h }: x4 O4 b v
" x. d2 ^3 K0 K5 Asubplot(2,2,4);
" s' U+ l; W. g' g2 bstem(m,xo,'filled');! w8 ~% @: ~# X2 D7 G
title('Odd part');" i* b6 V* l5 A) _ H' W7 L
xlabel('n');ylabel('xo(n)');
$ K2 H' T% i' Y7 {- q) gaxis([-10,10,-0.6,0.6]);# |& V1 J& p3 p
3 {- d; \) }/ g' s
/ x: Q5 ^2 R0 o% r3 K3 K" [8 b z2 l
事实上,这篇博文到这里已经结束了,那我还想看看序列x(n)= u(n) - u(n-10)的合成过程:. q! \& e, t! e! i7 \
6 s& c2 p; r0 D% ^5 ^- \
clc
4 I: y" y. ?+ h W) A. sclear
( W' \+ y& z0 e& M4 Hclose all0 ~2 n# j8 h$ D: p/ H n$ S
) I; G: p, m/ i
[u1,n1] = stepseq(0,0,10);
& K% ~; w% s- h0 Q5 x( g+ Y0 x
- B2 f' ~$ h. M5 N# W* {subplot(3,1,1)
: d6 N A! F% b) P. G( i# Gstem(n1,u1,'filled');2 u! r/ Y' ?- B8 `1 ]$ m
title('u(n)');
' P( V- F: m, Wylabel('u(n)');xlabel('n');
( v! x6 P/ r6 E0 v3 {: _6 zaxis([-10,10,0,1.2]);
2 L; i6 W* y; c0 L3 ?8 q! U6 G& F
/ l K$ Q/ o" r# [0 C6 \* w$ ~- f[u2,n2] = sigshift(u1,n1,10);
+ }& f* m& K8 n. f- A @subplot(3,1,2)! E a, N+ y4 I
stem(n2,u2,'filled');! {; m. w7 A. M
title('u(n-10)')
% }3 x9 r. O% @& R( }6 \8 {. O9 uxlabel('n');ylabel('u(n - 10)');* y% z9 S: n, o9 D5 v
axis([0,20,0,1.2]);* F" G0 f6 i7 Z5 W+ C) `- E3 F
. j( {% y2 P" z s- U* Y( c# V
[x,n] = sigadd(u1,n1,-u2,n2);1 ^$ R( d2 K! x$ h+ M
Q! j8 L& N% G
subplot(3,1,3)5 ~ A# v& Y/ v2 q' a( s: Y
stem(n,x,'filled');' U+ B. f$ E* g$ l& {
title('Rectangular sequence');2 Q7 [: J. }1 r" f
xlabel('n');ylabel('x(n)= u(n) - u(n -10)');
0 \ i. ^ `" D9 B, p1 e( Paxis([-10,10,0,1.2]);
( y9 h# J H) M' _6 f6 w# m+ s) ~9 E8 S5 Z9 w* J( O5 _) v
* q1 ^# _, p: V2 E$ j# s9 s9 X6 h; o* o4 p3 _3 B& y
- q- [8 L& N r0 ^! H |
|