|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
; `$ J% J7 L) i- H
函数参数 n:贝塞尔阶数 k:要求零点的个数 kind:第几类贝塞尔函数2 B O/ w3 S( O% @7 ~
8 c! B4 N, q/ ^7 K1 T4 e
function x=besselzero(n,k,kind)$ R' D# |% Z% F: s1 S5 _: t5 g" ?! H* Z
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% n# i9 a3 ?9 H C; `7 G%
( D3 G7 r. V0 [' B3 B( C! C% besselzero.m
# P) x& E2 u8 k7 [3 _) m%
. Y7 X1 O. F3 {& a, C& A Y% Find first k positive zeros of the Bessel function J(n,x) or Y(n,x) M' o( ]: y9 r+ k) w1 n: x
% using Halley's method.
+ }" z. r5 _8 }% l* m; \, ]5 h6 V% b
% Written by: Greg von Winckel - 01/25/05* C( x1 z N4 u I0 |: ]7 v- n
% Contact: gregvw(at)chtm(dot)unm(dot)edu; M+ g7 k1 M" n$ q) c5 U
%
! b( n- o% G; k" r/ M( V6 z%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%: v1 u2 N6 N4 G! M6 s
k3=3*k;
/ T' f; @7 R; A! O, Tx=zeros(k3,1);! @( t' J7 N* ?3 D
for j=1:k3
# t7 r: w% ~+ z# U1 z7 [ " p2 N1 q0 s) d6 f/ j% f8 _
% Initial guess of zeros
( L7 j) Z& s9 P* G; A; Y% j x0=1+sqrt(2)+(j-1)*pi+n+n^0.4;3 u$ r% A2 e, }% s; @2 B2 Z
( f S, `" b1 S % Do Halley's method
: f6 t4 l2 {' e& X% f x(j)=findzero(n,x0,kind);: o3 Z" |5 u* `$ e! @
if x(j)==inf, e1 e! N$ W5 R" v J- K3 C/ ?
error('Bad guess.');
6 H% y1 Y n/ F end8 n, Q( |0 W+ P) L, }# T2 @
' z+ w( S0 a( V& Yend
2 f- t$ g4 V# e0 I0 T6 r. o. tx=sort(x);# U1 l+ o# h8 H; T0 F6 G
dx=[1;abs(diff(x))];
5 G2 w6 D/ b) v4 K Ax=x(dx>1e-8);; J0 u6 f* q% \; E: F0 s# [; x! V
x=x(1:k);
% r4 O$ C" e! [# s8 k4 Gfunction x=findzero(n,x0,kind)$ ], f, I6 }: I$ U: T% R
n1=n+1; n2=n*n;1 g% i* ~6 H' o6 h
% Tolerance0 e+ }5 ^, D6 a! c* R+ u3 k8 |
tol=1e-12;
7 u6 t) f8 k8 K+ Y% Maximum number of times to iterate
, Q/ l/ Q- O" R) [1 ]4 pMAXIT=100;
1 {3 M" V6 G3 y% Initial error* n0 A: l8 N9 k! _ Z7 Q i
err=1;
3 ~' l) u/ Z2 g9 Niter=0;
# y9 O- y. T. x1 ?, q. a \while abs(err)>tol & iter<MAXIT
' e4 T/ k( M# f6 ?9 n& N7 ~. I5 E 7 R2 q2 b: l7 J5 f0 ^* B
switch kind
+ I. P8 _ i& q' l9 V case 1
( l# n/ R! x% ~$ G8 r$ m a=besselj(n,x0); 7 T$ C& F' t2 i9 Y% Y) t- y
b=besselj(n1,x0); 5 [9 ?/ u) ^2 q M* e3 ?. m/ R
case 2* |' t' r+ Y( b1 P! I( u- `
a=bessely(n,x0);
r3 {5 s- r* d7 w b=bessely(n1,x0);
3 O& {. u: z4 d D& p/ h end$ W9 w; Y5 h/ z. ~; t- G1 r
0 R2 \/ c2 {# r9 U, C* S x02=x0*x0;
; v+ Z2 w# H" p7 r! t1 Y
- @ N! X; g3 u4 e err=2*a*x0*(n*a-b*x0)/(2*b*b*x02-a*b*x0*(4*n+1)+(n*n1+x02)*a*a);9 |# x6 x! J3 G' u
) r4 W0 ?2 R5 S8 w5 s" D x=x0-err;% d4 W. u) t' B$ _- h/ k1 t
x0=x;
% v9 P; N- d8 T1 e- R' y iter=iter+1;
: }; A) i9 @& a4 f E + C; X9 L: v8 ~1 e# z
end- \3 O2 j1 v8 S, Y/ W7 _! [
if iter>MAXIT-10 D0 G+ e! S. z) R; Q. D; Q5 |
warning('Failed to converge to within tolerance. ',...
) A9 ? h3 J" H5 U; k# g( I( U 'Try a different initial guess');
3 m/ `- v# k; C( z/ {3 \ x=inf; 3 q: l4 `( c$ r: O- c
end
/ U! b0 X( c0 R- U8 k# T: v2 {/ l' ?; w o* I3 H7 x
|
|