找回密码
 注册
关于网站域名变更的通知
查看: 553|回复: 1
打印 上一主题 下一主题

Matlab的BP神经网络各种不同算法程序

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2019-11-11 15:02 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
1:一般模式的BP:2 A1 r7 y* K; }( N# G/ r! \+ e
clc
7 P( h' G( a+ K* Q! Y6 l. sP=[-1 -1 2 2 ;0 5 0 5];, t6 z. q) L" }) [7 m& s
T=[-1 -1 1 1];
5 d  b" G4 z. y# s, }net=newff(minmax(P),[3 ,1],{'tansig','purelin'},'traingd');& }: b& M  a/ Z. C4 f5 e
net.trainParam.show=50;
- I; W7 F% G9 Z9 w0 qnet.trainParam.lr=0.05;
' Q) M, e4 b# `net.trainParam.epochs=300;
) |% D# }* m) L* q% `' Wnet.trainParam.goal=1e-59 Q5 i* C& Q/ R$ I0 s
[net tr]=train(net,P,T);0 M9 F; ^( t' c9 W( d! t

8 X0 h; j( [9 U  W2:加入动量的BP
8 i( R+ S6 N3 Q9 \* P% m9 h9 k3 B, Bclc
% P- C7 O4 C0 c8 y  [2 WP=[-1 -1 2 2 ;0 5 0 5];
0 ~. d" S  P& ^5 t4 t& m: b: Y1 B6 wT=[-1 -1 1 1];
2 d+ q0 ~0 [) w( g; j  Hnet=newff(minmax(P),[3 ,1],{'tansig','purelin'},'traingdm');* D0 e4 X4 S, ^: D& f8 |* C2 I
net.trainParam.show=10000;, d6 x$ y, Q9 T) i% D7 \
net.trainParam.lr=0.05;
6 G4 y+ d0 H  A4 t* w) Mnet.trainParam.mc=0.9;
' {% N$ G4 \2 y8 z" b% u% Anet.trainParam.epochs=10000;9 ^# Z* C8 ^( b, K& u4 Q
net.trainParam.goal=1e-5*100; Y& r8 h$ J% s
[net tr]=train(net,P,T);' w4 J$ G' b4 E& g

1 j% g' E. K. D4 y2 T3:自适应LR变步长:
* s* N: D! F4 _) \clc  d' I1 P2 H  _$ X
P=[-1 -1 2 2 ;0 5 0 5];
% s: [2 F& q' H% k& M& FT=[-1 -1 1 1];8 v# m& W% a) q0 T( w
net=newff(minmax(P),[3 ,1],{'tansig','purelin'},'traingda');5 I+ f  O, K: }5 o
net.trainParam.show=10000;3 g+ Q% v/ u$ c
net.trainParam.lr=0.05;
4 N* h' N( D! l! tnet.trainParam.lr_inc=1.05;
; e+ l0 ^* X6 y& e8 lnet.trainParam.epochs=10000;) y: c" X! g: u5 ]  w0 g
net.trainParam.goal=1e-5*100
. W6 C& I' b8 M/ U[net tr]=train(net,P,T);1 o; v8 b. b* @3 R( ?! p7 f3 I+ R

  q. B6 I' @  n; P( j! T. P3 ~- \9 R2 i
4:弹性梯度法" l9 Z; E; O& S3 l3 M
clc
5 t1 M8 {$ H5 kP=[-1 -1 2 2 ;0 5 0 5];# S/ N; T- j6 L" D8 h  W, I
T=[-1 -1 1 1];
% H2 O& E- y1 m0 \+ knet=newff(minmax(P),[3 ,1],{'tansig','purelin'},'trainrp');
# N  p/ V4 R  b3 gnet.trainParam.show=10000;. N: m4 _3 ^" J& T: C' f9 w! C
net.trainParam.lr=0.05;- n7 c' W* K" w7 \" O0 J/ P
net.trainParam.lr_inc=1.05;8 L$ R# K# q9 X5 K. @. {
net.trainParam.epochs=10000;/ e$ d; @+ ^7 x1 M9 P% R
net.trainParam.goal=1e-5*100
" J' W4 a1 t5 c  K, i  L, y$ `[net tr]=train(net,P,T);
% M+ d8 g% Y8 f/ l
; [; R2 V. j' o; \  _/ i5:共轭梯度1& p7 {( R" R9 b' X( c  q
clc
; F/ c5 Q+ P( R/ U* DP=[-1 -1 2 2 ;0 5 0 5];- p4 ]0 k1 Y# E' E! j* `$ @4 g0 g
T=[-1 -1 1 1];
$ d. e+ v" [& M4 w+ R3 A& wnet=newff(minmax(P),[3 ,1],{'tansig','purelin'},'traincgf');  m2 T- P; i4 R+ o0 l1 \
net.trainParam.show=10000;
( B0 o! P; Z/ S0 H* W( [net.trainParam.lr=0.05;! g8 m( L+ s4 R; e2 u8 ?1 l
net.trainParam.lr_inc=1.05;
2 c. ~& p& u' w4 p1 a- {net.trainParam.epochs=10000;5 H$ |) p2 e  A, w7 H
net.trainParam.goal=1e-5*100
1 N& ~: X' ~) ^* Y$ N[net tr]=train(net,P,T);
- t! O0 j0 T& M: ~4 S) e7 {+ i+ A0 e. ]: _; J0 h
6:共轭梯度2
# w- N8 c" B! G9 {$ q0 T6 H' f. tclc
# C: o9 Z* P  y/ Y7 ]P=[-1 -1 2 2 ;0 5 0 5];
5 U3 t/ H; e' A: a  {T=[-1 -1 1 1];
, R, x9 d" Z0 S, Onet=newff(minmax(P),[3 ,1],{'tansig','purelin'},'traincgp');
. K( l# T/ B9 R; s: g0 Bnet.trainParam.show=10000;
9 V: l0 d$ @7 i% G% ^5 g4 Inet.trainParam.lr=0.05;$ Z0 f+ C4 e  R/ h1 b  i) N7 N
net.trainParam.lr_inc=1.05;
' ?" u( G' n6 a* S& }' w' Z! Onet.trainParam.epochs=10000;) Z1 v3 T7 N% {( l& q( t3 c) |
net.trainParam.goal=1e-5*100# X7 r3 G, g) A& h
[net tr]=train(net,P,T);
" R0 ?0 S+ e4 C% B! d1 i5 c: p) M* K- V
7:共轭梯度3' d2 s( O( ^, L9 [# R' L
clc
& k/ c) h3 l/ Z" g2 w  zP=[-1 -1 2 2 ;0 5 0 5];$ @5 h5 ?- Q9 m
T=[-1 -1 1 1];
6 H" T5 t: G. C' O9 {; [net=newff(minmax(P),[3 ,1],{'tansig','purelin'},'traincgb');
; |# Z6 ]! z& H$ l$ E$ c9 ^5 @net.trainParam.show=10000;" l- p" p$ G1 e7 l, c' m" i! |
net.trainParam.lr=0.05;# x0 N: ]' D) g6 ]% }0 F2 N7 Z
net.trainParam.lr_inc=1.05;
( E- o7 e) D5 M3 _% ^0 ~net.trainParam.epochs=10000;0 k- |, t- R" a
net.trainParam.goal=1e-5*100
4 h9 T. a! R4 }4 x$ N  q1 F' A[net tr]=train(net,P,T);
8 ^2 W8 {: G0 R/ E5 W$ G) o( J' q. d) F0 c
8:共轭梯度4$ M3 _* i2 d1 K! _) ]2 V2 I- E8 K
clc/ F' r6 _+ w. `4 @" S
P=[-1 -1 2 2 ;0 5 0 5];
& r, [6 a, M9 J: T/ ^T=[-1 -1 1 1];% Z4 Z, V+ P9 ~8 h+ c9 r7 T& L9 ]
net=newff(minmax(P),[3 ,1],{'tansig','purelin'},'traincgb');
8 G/ e  P6 b( X# Vnet.trainParam.show=10000;  [; C, c, _! B4 }  R
net.trainParam.lr=0.05;' v5 |; n3 V% O2 \" A
net.trainParam.lr_inc=1.05;
+ S. i2 t: @5 l+ cnet.trainParam.epochs=10000;. Z( Y" |2 L/ B: u7 B
net.trainParam.goal=1e-5*1005 h* Z. K" B8 i; X7 e
[net tr]=train(net,P,T);! ]( `" [0 a7 i: L% j

% `( @4 T- Z: T. `; B9:拟牛顿法;
3 j5 P. C, ?' t1 F  V! b8 u; yclc8 i+ W7 V9 O9 `" F$ V5 Q
P=[-1 -1 2 2 ;0 5 0 5];
0 ~3 f0 v. Z' @# v8 ^6 N. v* P) }T=[-1 -1 1 1];7 g/ i8 f  Z3 q4 f5 Z
net=newff(minmax(P),[3 ,1],{'tansig','purelin'},'trainbfg');  O' ?9 T4 f* Y. x. }
net.trainParam.show=10000;3 ?1 [( E% c  K! ?0 e, \
net.trainParam.lr=0.05;2 U4 F9 h# e7 d1 B0 K7 I
net.trainParam.lr_inc=1.05;
" M8 N$ r9 V7 y8 Z" S% Rnet.trainParam.epochs=10000;
8 E1 ]* k8 l) X7 e# z+ f+ |net.trainParam.goal=1e-5*100
9 y8 Z' I- A* p. J[net tr]=train(net,P,T);3 t! d! ]" ^4 e0 j  r

# |# o( P1 [3 z6 {* ?8 l10:一步正割
) B' W! O5 v( F( W; E8 Gclc
" ?1 a2 u. f# q$ r0 o' OP=[-1 -1 2 2 ;0 5 0 5];: V3 N3 w0 z8 [& M. g) e
T=[-1 -1 1 1];
) l' i% X( A) K& Vnet=newff(minmax(P),[3 ,1],{'tansig','purelin'},'trainoss');
( Q9 b3 f7 t* a9 K9 p  gnet.trainParam.show=10000;4 J2 D: _: [* [5 ]! b
net.trainParam.lr=0.05;7 X# b! q* F9 o2 ]
net.trainParam.lr_inc=1.05;
1 W& Y! ^* @' ]& qnet.trainParam.epochs=10000;
3 R+ [( x1 \) d9 ~1 gnet.trainParam.goal=1e-5*100/ x! E$ e, {% j, U& r
[net tr]=train(net,P,T);
+ U; ^- ^/ I+ r" G( O2 ^# `" h% c1 B% u( @
11:levenberg-marquarat:
! O9 z6 B3 E( k8 D5 Sclc
2 n- f, b; w. y4 P& oP=[-1 -1 2 2 ;0 5 0 5];
6 @* f7 F  M, Y: p' QT=[-1 -1 1 1];' }. Z2 O8 x1 u9 B
net=newff(minmax(P),[3 ,1],{'tansig','purelin'},'trainlm');1 X3 W, N0 b- h# b; _8 r) a# K( R
net.trainParam.show=10000;, e: m1 j6 k4 d, b  S1 }0 q
net.trainParam.lr=0.05;( U6 P3 d. O8 c% X
net.trainParam.lr_inc=1.05;6 O* g. W; e' h0 f( z
net.trainParam.epochs=10000;8 i% u& [( R& @" ^
net.trainParam.goal=1e-5*100
2 f8 H2 A; |! O  k) _# h5 i3 A( R[net tr]=train(net,P,T);

  u& M3 N2 c8 _0 Q4 q
7 o+ r/ X" D3 F2 V, d9 _
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-11-23 17:58 , Processed in 0.140625 second(s), 23 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表