找回密码
 注册
关于网站域名变更的通知
查看: 300|回复: 1
打印 上一主题 下一主题

Signal.Detection.and.Estimation

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2016-11-8 13:37 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
Contents
2 ^6 b# A* n! c  S, ]% o# Y3 APreface xv: B+ t  s1 f/ `
Acknowledgments xvii
" v1 e" A( I' G- }Chapter 1 Probability concepts 18 O1 Q" A! O# Y6 z; ?: n
1.1 Introduction 1. x$ l8 p0 R; t( c# ^+ K
1.2 Sets and Probability 1  M- N$ T, O& g6 v* N  N1 J" J" s3 {, g
1.2.1 Basic Definitions 12 ?$ ?6 [, a3 A& O+ l3 N
1.2.2 Venn Diagrams and Some Laws 3
* E  f- I; N" G+ x; r7 i1.2.3 Basic Notions of Probability 67 g8 W# c* K0 Q/ V( |3 m" k9 L
1.2.4 Some Methods of Counting 8
# G# S& R, X& l8 k% A1.2.5 Properties, Conditional Probability, and Bayes’ Rule 12& v+ T% ?7 l0 E$ G8 K. M+ f
1.3 Random Variables 17' }6 w  Q( A& l' u# R
1.3.1 Step and Impulse Functions 17
5 V% i, P$ A  F6 O1.3.2 Discrete Random Variables 18& d9 G' a& S9 F; M) X
1.3.3 Continuous Random Variables 20
( i$ n$ e! U! ?: G  i( d% T1.3.4 Mixed Random Variables 229 |( b( J$ X8 q& d- S2 ^+ {, i* B
1.4 Moments 23
: }7 f1 a8 j8 G8 w5 h( G5 e1.4.1 Expectations 23
" S8 k9 @6 g5 e+ U1.4.2 Moment Generating Function and Characteristic Function 26
. V8 R' J+ g' R& x1.4.3 Upper Bounds on Probabilities and Law of Large& y- S! d% q. \2 e' q& U5 p
Numbers 29+ f: S! L8 l6 A5 [
1.5 Two- and Higher-Dimensional Random Variables 31
" h/ j8 D8 L0 S8 x, T1 D% y1.5.1 Conditional Distributions 33! m  M" M5 e. {
1.5.2 Expectations and Correlations 41
9 u5 K* F* i9 J( c1.5.3 Joint Characteristic Functions 44) h; b- V; D; M3 ?7 F9 Y
1.6 Transformation of Random Variables 48" w/ E6 `. _6 c1 G' r
1.6.1 Functions of One Random Variable 49, m# y) g7 A0 d
1.6.2 Functions of Two Random Variables 52* b' B9 h( b' P  g2 t  V# D/ O
1.6.3 Two Functions of Two Random Variables 59
( ]# p* s5 m' P' |1.7 Summary 65
/ c, G9 P  O& J) o2 B7 RProblems 65
% G- S2 J' X& S) v/ _% ?Reference 73$ U4 {/ `  F+ T, o; w2 u
Selected Bibliography 736 X9 V$ a4 Z1 m6 Q& K0 \
Chapter 2 Distributions 75. {2 k, _! X" K; ]4 p
2.1 Introduction 75% e5 e: @! o( H" l4 V$ b
2.2 Discrete Random Variables 75
5 _1 j$ M; r& H( w2.2.1 The Bernoulli, Binomial, and Multinomial Distributions 75! I2 z2 W% z2 Y( v( E, b/ v( [
2.2.2 The Geometric and Pascal Distributions 78
" b2 r# {: [' b% [+ A: n$ n2.2.3 The Hypergeometric Distribution 822 \- f1 F! [7 g6 t: _7 U' q" o* p$ @
2.2.4 The Poisson Distribution 85
4 L9 F; e  S/ j, Q, I1 n: W2.3 Continuous Random Variables 88
; M2 `3 r% ]' J4 s* E2.3.1 The Uniform Distribution 884 L# x8 o/ a8 m
2.3.2 The Normal Distribution 89* Q" ?- z7 n6 R6 K: Y+ g" b( z
2.3.3 The Exponential and Laplace Distributions 96. _! R" C. P7 T, I* j  d7 G" }1 S
2.3.4 The Gamma and Beta Distributions 980 n9 C& ?3 n6 C9 L! V
2.3.5 The Chi-Square Distribution 101: W" e/ f+ C( J( w; o' H
2.3.6 The Rayleigh, Rice, and Maxwell Distributions 106$ p- }( ?1 ]8 {- a
2.3.7 The Nakagami m-Distribution 115
* z. z) `$ Q* B7 e3 l. s2.3.8 The Student’s t- and F-Distributions 115
, V0 V3 m$ U3 ^/ m3 M2.3.9 The Cauchy Distribution 1205 ]+ D: [$ h7 ^; n
2.4 Some Special Distributions 121- n1 P  s; \) o! _. P
2.4.1 The Bivariate and Multivariate Gaussian Distributions 121
1 _$ v. |3 l( F' X; D* i2.4.2 The Weibull Distribution 129
) [- l# V0 s9 ~2 Y7 y  M2.4.3 The Log-Normal Distribution 131' ^+ F. c( ]3 `3 g# J/ R
2.4.4 The K-Distribution 132% R* R5 W. |& r. u; p7 R
2.4.5 The Generalized Compound Distribution 135/ }* O0 ^2 H# i! I! l2 [
2.5 Summary 136$ f" {8 D! n, Y6 p( j+ p! \
Problems 137* B9 W7 G# |" q- v7 d6 }
Reference 139
0 d2 E* H9 T  i) FSelected Bibliography 139
& x; _- R9 I) Y5 l8 {Chapter 3 Random Processes 141, m% ]% m2 \- ~2 A! t
3.1 Introduction and Definitions 141
2 R5 z' F$ k0 h" V+ h3.2 Expectations 145
1 t7 z+ K- N( D! i3.3 Properties of Correlation Functions 153
$ C+ S3 q& F  @* a" A3.3.1 Autocorrelation Function 153
; m+ B. u- n$ u: \* S& Q3.3.2 Cross-Correlation Function 153
7 I2 i  K- k) H1 H) o" y% e3.3.3 Wide-Sense Stationary 1544 E# T  X. \4 ^. N& V( @
3.4 Some Random Processes 156
0 X( {- m3 X+ Q- j- W+ \% ?3.4.1 A Single Pulse of Known Shape but Random Amplitude! H" u2 _. p) v, ~7 _; k( T
and Arrival Time 1568 a4 A' A/ `5 I) l5 N
3.4.2 Multiple Pulses 1578 ?7 ]3 [: y4 P7 c) p- q( \; f
3.4.3 Periodic Random Processes 158
0 Q4 K2 L2 t- y3 L/ E9 g, _3 |' m3.4.4 The Gaussian Process 161
8 Y3 [6 Y( I& }: V8 O7 y4 B1 Q3.4.5 The Poisson Process 163& ~  Z2 X6 d, A: d; c" J- w( s
3.4.6 The Bernoulli and Binomial Processes 166
$ h5 {, Y7 m0 v1 a/ b9 [3.4.7 The Random Walk and Wiener Processes 168+ E5 g6 u/ ]: c/ `7 i+ e5 D
3.4.8 The Markov Process 1721 i6 p& t0 E& F
3.5 Power Spectral Density 1744 \8 Z& t7 Q8 {( i6 @& Z
3.6 Linear Time-Invariant Systems 178
; D9 s! K) Q' o1 O, O3 k3.6.1 Stochastic Signals 179- _+ C! x  m) h
3.6.2 Systems with Multiple Terminals 185" x  p  ]# G) I
3.7 Ergodicity 186
) F& b7 N0 a5 H& [) S1 j# ]$ J3.7.1 Ergodicity in the Mean 1864 W4 _8 `' d" E4 B
3.7.2 Ergodicity in the Autocorrelation 187
$ S" Q2 E1 f$ I$ b, ]! t6 E! L3.7.3 Ergodicity of the First-Order Distribution 188. |4 j2 {) v7 a
3.7.4 Ergodicity of Power Spectral Density 1887 I$ j: D* u# q9 ^; Z+ i0 t4 J# I
3.8 Sampling Theorem 189* H; e" f0 }0 s$ i& q
3.9 Continuity, Differentiation, and Integration 194; f  {0 f  u6 b
3.9.1 Continuity 194) T4 y7 l. G& ^6 n5 Q' y; f$ w
3.9.2 Differentiation 1965 W: B( @! b$ l: _" M
3.9.3 Integrals 199
# {7 O% s- p" N9 ?3.10 Hilbert Transform and Analytic Signals 201% \1 y* n# W. f4 f
3.11 Thermal Noise 2058 H. Q! D# z  A# Y" \2 u7 ^
3.12 Summary 211
+ W9 j1 p5 {/ x2 u% I3 q- {3 P& QProblems 212
; B% d" t( y1 I1 V0 [Selected Bibliography 2215 U" C7 s6 Y9 }( y% f; i
Chapter 4 Discrete-Time Random Processes 223, y( q$ ~8 y  r# W
4.1 Introduction 223
9 r+ X% m, K) N* J4.2 Matrix and Linear Algebra 2242 c. l2 }1 w4 t' o7 M
4.2.1 Algebraic Matrix Operations 224. {+ Y/ y7 N! ~6 j7 A4 a
4.2.2 Matrices with Special Forms 232
" @0 j; J1 X2 ~) D+ e2 y0 h- E8 _5 r4.2.3 Eigenvalues and Eigenvectors 236
4 z$ S1 e& X- b9 T& j4.3 Definitions 245
* W, d# d; q4 I8 E4.4 AR, MA, and ARMA Random Processes 2536 ~# J6 _# {/ a* d* ~
4.4.1 AR Processes 254
0 A( p% L, u2 W- c, H& g. ~; z. Q4.4.2 MA Processes 2621 A1 @. Y1 g/ m: X" u" z# i0 f
4.4.3 ARMA Processes 264$ L8 @8 v3 P- ~7 i) _8 V, d
4.5 Markov Chains 266
, x6 c. E( S& D4.5.1 Discrete-Time Markov Chains 267- x- A2 D& n3 I0 _5 N% D
4.5.2 Continuous-Time Markov Chains 276) b5 _' O7 [( W5 b  ]) R# q& ?
4.6 Summary 284
; [1 }% ?' O7 vProblems 2845 |! m0 G9 v+ p/ `
References 2877 ~. R) n# K8 ?: i( t
Selected Bibliography 288
) C& Q/ ?1 V  pChapter 5 Statistical Decision Theory 289
8 y/ ?+ j  {  ~3 Q0 x5.1 Introduction 289
6 U  M+ t" g( J- J7 |( A5.2 Bayes’ Criterion 2914 Q3 p  H0 E* N/ A+ O% w( S
5.2.1 Binary Hypothesis Testing 291$ Z2 a6 d% I  C
5.2.2 M-ary Hypothesis Testing 3037 V1 I! U2 ~0 E. }
5.3 Minimax Criterion 313
, ~; K/ s( j9 N' ~$ u4 Q5.4 Neyman-Pearson Criterion 317! v! O; _9 f4 R  S' ^
5.5 Composite Hypothesis Testing 326" e1 {) R5 |) m
5.5.1 Θ Random Variable 327  t  m5 H1 u( j# ]9 @. k- @% l
5.5.2 θ Nonrandom and Unknown 329
8 _" A3 I- E+ W: V7 o( U1 b5.6 Sequential Detection 332
- z5 z4 H- H7 K  X0 v# y: Z5.7 Summary 337
: i* ~( I$ x+ A. FProblems 338  m7 T$ S" W/ E
Selected Bibliography 343
  D# a: x- D* }) F* _/ xChapter 6 Parameter Estimation 3452 U' z9 Y; \8 M4 G# ^
6.1 Introduction 345
7 G7 q  o; ~! `$ y* {; X+ g6.2 Maximum Likelihood Estimation 346
9 x2 P4 s3 d! \/ ]- m6.3 Generalized Likelihood Ratio Test 348
* q! O! j5 M2 [; x, {& R0 v6.4 Some Criteria for Good Estimators 353
3 Y: K9 K* [. F' q9 }. _. I6 M6.5 Bayes’ Estimation 355- Y) T0 A2 x$ {  k: e9 {+ R. e
6.5.1 Minimum Mean-Square Error Estimate 357" Q% F5 T2 H- n
6.5.2 Minimum Mean Absolute Value of Error Estimate 358
5 O  B, m2 U  c+ C8 B6.5.3 Maximum A Posteriori Estimate 359
+ X) h- p6 \3 W6 R) `9 _2 X; F6.6 Cramer-Rao Inequality 364* g0 o1 O0 T) }, M
6.7 Multiple Parameter Estimation 371: a2 N- v) [$ ]3 Q
6.7.1 θ Nonrandom 371! [$ h) Q0 |# I+ W- _! S  k0 C
6.7.2 θ Random Vector 376, T6 X0 o: w; E, Z  R; {6 V) f/ r) d
6.8 Best Linear Unbiased Estimator 378( ^# V4 @( ]! d9 [5 u/ M; r
6.8.1 One Parameter Linear Mean-Square Estimation 379
- x8 d; G/ S, y2 @, p6.8.2 θ Random Vector 381$ X5 O& w! r4 y% r3 w
6.8.3 BLUE in White Gaussian Noise 383
3 h9 i1 ^/ t( q3 G' R* R6.9 Least-Square Estimation 388
7 J" ~% W8 C" x$ z, k# T- b6.10 Recursive Least-Square Estimator 391
: s, B- b! h% Z& e5 h6.11 Summary 393
* b6 Q2 v1 Z$ v+ NProblems 3948 [1 D) r* g5 B7 o, m5 W3 B# y3 i
References 398
, p9 y% ?0 q" D. |& @9 A; G3 pSelected Bibliography 398
. j3 U: c1 A, s, fChapter 7 Filtering 399
2 ]1 N" r, ~2 e# ^% g7.1 Introduction 3996 z: E; [1 s" b! M  R. K
7.2 Linear Transformation and Orthogonality Principle 400
* E! P, `6 f/ }2 f+ F, T5 ~  b3 T7.3 Wiener Filters 409
' s* h) Q7 V! V+ A* N. f* R' V6 u% `7.3.1 The Optimum Unrealizable Filter 410+ k7 Y; ~7 y- h
7.3.2 The Optimum Realizable Filter 416
( V9 `' R9 U2 s3 a: h1 ?( A7.4 Discrete Wiener Filters 424
( s: p# _% q4 O' {  v8 H% Z/ Z$ `7.4.1 Unrealizable Filter 425
' ^7 [6 R8 c: u6 c, p/ |% }3 R) w7.4.2 Realizable Filter 426
0 g5 r, ^- g4 e- I2 ^2 {7.5 Kalman Filter 436
( Z3 v4 e3 `' z8 I5 o3 H7.5.1 Innovations 437
3 R2 A" |/ T, a7.5.2 Prediction and Filtering 440
; ?! a7 C+ @9 k* v1 b/ {1 p3 F* ?7.6 Summary 445* c5 Q% e: C* r0 C
Problems 445
+ P& h" X& H3 T3 ZReferences 448
3 D3 [  A2 P! [- n: z" KSelected Bibliography 4482 X) j" U1 a5 T! ~: d; U
Chapter 8 Representation of Signals 449: P$ p" R- l1 a* x9 p2 _
8.1 Introduction 449
4 B! ~5 M% r' B5 C8.2 Orthogonal Functions 449% B& F. X# S" p8 N3 \9 ~
8.2.1 Generalized Fourier Series 451! I4 o" k  ]3 `& ^3 C0 V8 @
8.2.2 Gram-Schmidt Orthogonalization Procedure 455
: \5 T. i. c$ u0 n( J8.2.3 Geometric Representation 458
( d2 h8 Q/ ?/ q  Y1 n' |8.2.4 Fourier Series 463" l2 L0 m' C! E% _$ K+ V# B
8.3 Linear Differential Operators and Integral Equations 466# Y3 T: P, S) r& A
8.3.1 Green’s Function 470
: G2 X- `. [* p0 C3 z8.3.2 Integral Equations 471
3 u: B, ^' V$ E6 o3 g/ {  a" ~8.3.3 Matrix Analogy 479
0 O, n1 N; n  j/ v0 b7 X8 }% l8.4 Representation of Random Processes 480. p1 i! ?' S& h/ s; }: N
8.4.1 The Gaussian Process 483
- z% I$ d- f0 U. P9 U  F8.4.2 Rational Power Spectral Densities 487
% d- S. W/ w8 _: V8.4.3 The Wiener Process 492
+ S3 n/ J+ p, H( ^( x1 h3 b8.4.4 The White Noise Process 493
/ d& t: r- A5 M5 j8.5 Summary 495
5 N8 E$ ^' _1 h) z7 PProblems 496
5 p1 j2 G$ K" L  N' X+ U' QReferences 500
  V0 s6 |+ w* o: `# rSelected Bibliography 500
6 f& ]- d* V4 HChapter 9 The General Gaussian Problem 503; {' e/ N: Z/ G0 m! d5 `
9.1 Introduction 503# v+ z# u/ G! p
9.2 Binary Detection 503
6 @, ?4 ~+ b$ E% d3 [$ R9.3 Same Covariance 505
# T1 @6 p7 ]% [+ L9 `  e9.3.1 Diagonal Covariance Matrix 508
( C* L6 M# k* @8 U6 F  X9.3.2 Nondiagonal Covariance Matrix 5117 H" U  k( T4 f( F* m6 m
9.4 Same Mean 518
; A' H+ X9 b3 ]2 {# I; h# o9.4.1 Uncorrelated Signal Components and Equal Variances 519# M% P% U- v. @/ d8 G9 N/ O
9.4.2 Uncorrelated Signal Components and Unequal2 L9 k5 j7 b( j
Variances 522
  m0 m' h* ~/ T' A4 ?9.5 Same Mean and Symmetric Hypotheses 5249 F( K# W. }8 K+ x1 E5 |( l
9.5.1 Uncorrelated Signal Components and Equal Variances 526
# [+ X4 Q" k' x" ~9.5.2 Uncorrelated Signal Components and Unequal' h3 s0 g; W) }  {" P  x
Variances 528: h& U" t" _0 ?4 D; j2 d6 l
9.6 Summary 529! n% F- `+ d+ c4 B9 N) K- \
Problems 5309 d  _5 c; B2 N+ Q
Reference 5320 k' g0 h  |) X9 R
Selected Bibliography 532$ w  K: Y9 l# u/ K1 p  R4 }3 b
Chapter 10 Detection and Parameter Estimation 533
! B- g) _0 B8 Z; ]! P  K+ R10.1 Introduction 533/ `* A4 X* ~& S$ |& U
10.2 Binary Detection 534- \) P3 [. ^* d1 B& }
10.2.1 Simple Binary Detection 534  T/ I) L1 ~3 ^, Y
10.2.2 General Binary Detection 5435 Q6 p1 D4 e1 c6 p
10.3 M-ary Detection 556
! G& g1 o9 h; A: R& b10.3.1 Correlation Receiver 5578 H: p' `. L( l: C
10.3.2 Matched Filter Receiver 567, L2 A; Y# ^  x1 W5 G6 Y4 b" L
10.4 Linear Estimation 572
$ O& c4 D. T7 C7 x10.4.1 ML Estimation 573; x5 y. b# H4 \9 `
10.4.2 MAP Estimation 575
' K+ w7 @/ l2 w) @2 S/ D10.5 Nonlinear Estimation 576" {) j* R9 _) ?
10.5.1 ML Estimation 576
$ m+ |+ U' K5 b3 b10.5.2 MAP Estimation 579, V) J7 c' H- u  `9 ?0 [  K
10.6 General Binary Detection with Unwanted Parameters 580* L- w- ~2 R$ h. J* P" I1 y
10.6.1 Signals with Random Phase 5837 w, O) Q" u' A; D4 X( l
10.6.2 Signals with Random Phase and Amplitude 595
( V' `  e& {4 l! m' i- H9 P! T2 M10.6.3 Signals with Random Parameters 598, P$ O" i6 }1 F0 ^& T+ K
10.7 Binary Detection in Colored Noise 6067 c, \4 Z5 K, d. w$ K2 x1 F, y. W& G
10.7.1 Karhunen-Loève Expansion Approach 6071 z, ^( ?2 v* V# I' t2 H
10.7.2 Whitening Approach 611
" M& c4 ~! _( k7 w6 Y10.7.3 Detection PeRFormance 6152 L: i. A& n7 ]# k  f
10.8 Summary 617. e& q  G$ a" |9 ~
Problems 618
) Q6 a: D9 ]- yReference 626
( L# s7 \4 U( o& A5 \! s; [Selected Bibliography 626
" D) t+ ~6 S  IChapter 11 Adaptive Thresholding CFAR Detection 627% g# H& K) a+ b; A3 z; {6 b
11.1 Introduction 627% N+ A( N0 y$ }8 J% @9 S6 e
11.2 Radar Elementary Concepts 6294 c' a& b" v. a3 O" P- ?$ b
11.2.1 Range, Range Resolution, and Unambiguous Range 631! i+ j* Y# q7 R' g* P
11.2.2 Doppler Shift 633
  `; }$ ^& [1 d- b5 g( {: I$ I9 \11.3 Principles of Adaptive CFAR Detection 634
* M$ R  P( q: Y& D# \; x- O0 u11.3.1 Target Models 640- V7 v' a, Z% Z) D+ s% d
11.3.2 Review of Some CFAR Detectors 6424 e4 i4 I* M8 r
11.4 Adaptive Thresholding in Code Acquisition of Direct-* F+ o& B1 W' k4 s# f$ g' k4 ?
Sequence Spread Spectrum Signals 648
5 X- u8 t# W$ T* L# u: p  o11.4.1 Pseudonoise or Direct Sequences 649
* E4 ^: w) w! Q8 T2 i  i5 M( U# B11.4.2 Direct-Sequence Spread Spectrum Modulation 652% o' Y  z& Z2 M6 Q
11.4.3 Frequency-Hopped Spread Spectrum Modulation 6554 A4 r. y- X. P) |% Y
11.4.4 Synchronization of Spread Spectrum Systems 655
2 _/ Y1 V0 u/ {11.4.5 Adaptive Thresholding with False Alarm Constraint 659
6 Z3 A% Q( ]/ i2 m6 Q, h11.5 Summary 660& B- ^, `  p5 s; A# f8 _
References 661
6 l. ^& z7 L/ u2 o3 @! [! _Chapter 12 Distributed CFAR Detection 665; w6 N! a2 \/ j+ E# H/ e/ i) n
12.1 Introduction 665
8 J! c( x) P. o( w6 T* V) W12.2 Distributed CA-CFAR Detection 666
( }- k: w! J. A12.3 Further Results 6705 l  y# |1 ^; k1 m/ x) ~, Y
12.4 Summary 6712 {5 B5 J# N8 B; [- v6 @$ g4 N# y
References 672
$ f1 @0 s0 z, _5 XAppendix 675
) g9 g9 ]! N$ }5 U% xAbout the Author 683' u$ @1 [1 x% e
Index 685( J4 ?+ n4 G% k$ L$ K5 M

Signal.Detection.and.Estimation.rar

4.24 MB, 下载次数: 2, 下载积分: 威望 -5

该用户从未签到

2#
发表于 2016-11-8 14:19 | 只看该作者
看贴学心得,回贴是美德% s, Y7 G% y  B1 V4 t7 T* W
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-11-24 00:45 , Processed in 0.171875 second(s), 26 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表