|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
Basic concepts in RF Design
/ m. e; Q7 L" t# XOverview
& ^0 }/ h8 ^8 S* C5 B: z9 lSystem Theory2 P. R, a$ C, k6 f
Effects of Nonlinearities
5 ~* f' u# ^4 ?8 }Gain Compression6 S7 N$ Y v) S" v) W
Desensitization and Blocking
$ J0 q0 C0 s9 G: M- F, zCroSSModulation8 B% z: w! a0 x- g. V W
Intermodulation) |* o& A! }2 Z5 Y( ]4 D
Adjacent Channel Power Rejection' V1 J& H1 p2 \, s) a) e @
Random Signals
7 N& ~7 u( P8 A/ R: O7 j2 l2 {Noise and Noise Figure! H# J' _, O+ w$ v) E" {; f6 q3 k$ I) v
Input Referred Noise
1 ~2 ]- `# i+ _9 Y$ F+ zNoise Figure of Lossy
$ W8 x, v+ Y6 r2 f. T9 P* H: Z3 o% q
5 | B7 I1 x# f7 _
System Theory (1)
7 Z+ i6 d; p4 w7 XLinear Systems
; \. w: y+ g7 b& t, ]* e7 s1 1 x ® y 2 2 x ® y! d( J7 v0 X9 s% g' s
1 2 1 2 ax + bx ®ay + by
, a) G7 G2 }7 E0 T J9 W" |If inputs x1 and x2 generate outputs y1, y2
0 i# O' w, q# {3 k( B' _. wFor a linear system output can be expressed as a linear combination of inputs
% o, E$ V- n( {0 sfor all values of the constants a and b- ?" P& B9 Q9 m# M( b. C2 c& Z
Time Invariant Systems: s: f* G) b: k* O+ m- B$ b! i
For a time invariant system time shift in input results in the same time shift in output1 r( R+ U3 S4 e% n* ~
x(t )® y(t ) then x(t -t )® y(t -t )
% N/ l. c2 R( q" K% W5 F$ X* PAny system that does not satisfy this condition is nonlinear
: ?) q. U3 \7 p' T& m8 iObs. A system is nonlinear if it has nonzero initial conditions5 w7 a H9 y+ G) U
for all values of t" h. Q& r/ F Y* J+ X+ q) K v$ P
* S. P6 c/ E; u, G K$ ]0 K6 E( A6 i2 `" @$ x' ?
; R4 ~. j1 p0 e |
|