|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
6 l- A, h1 P, f4 E# G链表是C语言编程中常用的数据结构,比如我们要建一个整数链表,一般可能这么定义:
$ g4 Y e. N) z0 H6 Y% R2 z1 w: `! h
- struct int_node {
- int val;
- struct int_node *next;
- };- W" Q' l- j! d x
, D) M5 [ k3 `
! `. y: B6 x5 v9 q/ j' M& ^为了实现链表的插入、删除、遍历等功能,另外要再实现一系列函数,比如:. w3 ~1 U/ y2 C0 U' Z5 u
; S* j5 L0 ^- D$ \" \( k7 A
- void insert_node(struct int_node **head, int val);
- void delete_node(struct int_node *head, struct int_node *current);
- void access_node(struct int_node *head)
- {
- struct int_node *node;
- for (node = head; node != NULL; node = node->next) {
- // do something here
- }
- }, a0 d7 i& w1 e5 ~: Y
2 | `( m! U! U% A# ^6 i+ J. K0 I& A) N* R1 Q
如果我们的代码里只有这么一个数据结构的话,这样做当然没有问题,但是当代码的规模足够大,需要管理很多种链表,难道需要为每一种链表都要实现一套插入、删除、遍历等功能函数吗?8 Z! D' O0 i& D% A0 p
, I* l$ W" [4 h8 L' ~6 E( x
熟悉C++的同学可能会说,我们可以用标准模板库啊,但是,我们这里谈的是C,在C语言里有没有比较好的方法呢?
G; R, V- b) E$ `+ ?( s# B3 m9 _! A8 s
Mr.Dave在他的博客里介绍了自己的实现,这个实现是个很好的方案,各位不妨可以参考一下。在本文中,我们把目光投向当今开源界最大的C项目--Linux Kernel,看看Linux内核如何解决这个问题。- v5 ^3 _1 \; W
( k" e/ M) m5 d( [# A2 PLinux内核中一般使用双向链表,声明为struct list_head,这个结构体是在include/linux/types.h中定义的,链表的访问是以宏或者内联函数的形式在include/linux/list.h中定义。
& B+ T0 g3 n3 o8 C! g3 O8 p1 E$ r: \' C( z T% |
- struct list_head {
- struct list_head *next, *prev;
- };, o1 o8 n2 ~2 r/ ?; e8 P3 y$ [2 z
7 F* z8 k. x' B/ k5 i% a+ e7 J+ |( @8 D( v) a) B
Linux内核为链表提供了一致的访问接口。( q0 ?6 Z% s+ Z9 t( {: U! s
0 X( K C; ^" e5 t" M! l8 |9 C
- void INIT_LIST_HEAD(struct list_head *list);
- void list_add(struct list_head *new, struct list_head *head);
- void list_add_tail(struct list_head *new, struct list_head *head);
- void list_del(struct list_head *entry);
- int list_empty(const struct list_head *head);" A6 O7 T! ^+ T: \2 l1 v3 L! B5 P
/ M+ r) ` {! ]
& Q2 v2 w7 S* f: L7 \1 o7 Q6 A以上只是从Linux内核里摘选的几个常用接口,更多的定义请参考Linux内核源代码。
! q. S+ m3 j* E* F! W% Y1 k' m" }( B3 c9 Z0 U" T9 K' C+ F1 H
我们先通过一个简单的实作来对Linux内核如何处理链表建立一个感性的认识。! K2 K5 e# y! d$ I$ d& R) L- }
9 d+ m! e. [! J {8 u
- #include <stdio.h>
- #include "list.h"
- struct int_node {
- int val;
- struct list_head list;
- };
- int main()
- {
- struct list_head head, *plist;
- struct int_node a, b;
- a.val = 2;
- b.val = 3;
- INIT_LIST_HEAD(&head);
- list_add(&a.list, &head);
- list_add(&b.list, &head);
- list_for_each(plist, &head) {
- struct int_node *node = list_entry(plist, struct int_node, list);
- printf("val = %d\n", node->val);
- }
- return 0;
- }- H! \( R& O) @3 _% ~3 i
* Z2 F" o, w0 R* v
, b4 ^8 T# C6 l3 P看完这个实作,是不是觉得在C代码里管理一个链表也很简单呢?( U2 U2 z$ T4 \ b6 u2 n
8 z' Q3 B _$ [; |+ ]0 d
代码中包含的头文件list.h是我从Linux内核里抽取出来并做了一点修改的链表处理代码,现附在这里给大家参考,使用的时候只要把这个头文件包含到自己的工程里即可。
( C* t3 h1 J: v1 _: j' c& o/ }! V6 d' E# _7 l& }# K
- #ifndef __C_LIST_H
- #define __C_LIST_H
- typedef unsigned char u8;
- typedef unsigned short u16;
- typedef unsigned int u32;
- typedef unsigned long size_t;
- #define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
- /**
- * container_of - cast a member of a structure out to the containing structure
- * @ptr: the pointer to the member.
- * @type: the type of the container struct this is embedded in.
- * @member: the name of the member within the struct.
- *
- */
- #define container_of(ptr, type, member) (type *)((char *)ptr -offsetof(type,member))
- /*
- * These are non-NULL pointers that will result in page faults
- * under normal circumstances, used to verify that nobody uses
- * non-initialized list entries.
- */
- #define LIST_POISON1 ((void *) 0x00100100)
- #define LIST_POISON2 ((void *) 0x00200200)
- struct list_head {
- struct list_head *next, *prev;
- };
- /**
- * list_entry - get the struct for this entry
- * @ptr: the &struct list_head pointer.
- * @type: the type of the struct this is embedded in.
- * @member: the name of the list_struct within the struct.
- */
- #define list_entry(ptr, type, member) \
- container_of(ptr, type, member)
- #define LIST_HEAD_INIT(name) { &(name), &(name) }
- #define LIST_HEAD(name) \
- struct list_head name = LIST_HEAD_INIT(name)
- static inline void INIT_LIST_HEAD(struct list_head *list)
- {
- list->next = list;
- list->prev = list;
- }
- /**
- * list_for_each - iterate over a list
- * @pos: the &struct list_head to use as a loop counter.
- * @head: the head for your list.
- */
- #define list_for_each(pos, head) \
- for (pos = (head)->next; pos != (head); pos = pos->next)
- /**
- * list_for_each_r - iterate over a list reversely
- * @pos: the &struct list_head to use as a loop counter.
- * @head: the head for your list.
- */
- #define list_for_each_r(pos, head) \
- for (pos = (head)->prev; pos != (head); pos = pos->prev)
- /*
- * Insert a new entry between two known consecutive entries.
- *
- * This is only for internal list manipulation where we know
- * the prev/next entries already!
- */
- static inline void __list_add(struct list_head *new,
- struct list_head *prev,
- struct list_head *next)
- {
- next->prev = new;
- new->next = next;
- new->prev = prev;
- prev->next = new;
- }
- /**
- * list_add - add a new entry
- * @new: new entry to be added
- * @head: list head to add it after
- *
- * Insert a new entry after the specified head.
- * This is good for implementing stacks.
- */
- static inline void list_add(struct list_head *new, struct list_head *head)
- {
- __list_add(new, head, head->next);
- }
- /**
- * list_add_tail - add a new entry
- * @new: new entry to be added
- * @head: list head to add it before
- *
- * Insert a new entry before the specified head.
- * This is useful for implementing queues.
- */
- static inline void list_add_tail(struct list_head *new, struct list_head *head)
- {
- __list_add(new, head->prev, head);
- }
- /*
- * Delete a list entry by making the prev/next entries
- * point to each other.
- *
- * This is only for internal list manipulation where we know
- * the prev/next entries already!
- */
- static inline void __list_del(struct list_head * prev, struct list_head * next)
- {
- next->prev = prev;
- prev->next = next;
- }
- /**
- * list_del - deletes entry from list.
- * @entry: the element to delete from the list.
- * Note: list_empty on entry does not return true after this, the entry is
- * in an undefined state.
- */
- static inline void list_del(struct list_head *entry)
- {
- __list_del(entry->prev, entry->next);
- entry->next = LIST_POISON1;
- entry->prev = LIST_POISON2;
- }
- /**
- * list_empty - tests whether a list is empty
- * @head: the list to test.
- */
- static inline int list_empty(const struct list_head *head)
- {
- return head->next == head;
- }
- static inline void __list_splice(struct list_head *list,
- struct list_head *head)
- {
- struct list_head *first = list->next;
- struct list_head *last = list->prev;
- struct list_head *at = head->next;
- first->prev = head;
- head->next = first;
- last->next = at;
- at->prev = last;
- }
- /**
- * list_splice - join two lists
- * @list: the new list to add.
- * @head: the place to add it in the first list.
- */
- static inline void list_splice(struct list_head *list, struct list_head *head)
- {
- if (!list_empty(list))
- __list_splice(list, head);
- }
- #endif // __C_LIST_H
1 T# m: p$ v, R, i) W 4 j9 m* P6 N. y# u4 \6 u9 y
9 s4 E+ v' R: n% r; W" J! Nlist_head通常是嵌在数据结构内使用,在上文的实作中我们还是以整数链表为例,int_node的定义如下:
) w- y: }9 V* w9 ]
8 J2 G! b! f) A& q M- struct int_node {
- int val;
- struct list_head list;
- };
$ l! ?3 s l5 G5 | * ]4 V& l& D3 U/ u' m% {3 O
0 z, e; U9 G: ]4 _
使用list_head组织的链表的结构如下图所示:
9 }3 o; }! X; D; d0 S: s# z' P
$ p" L0 x5 }5 z$ ^' D
6 O P+ t; }8 J( J0 y1 B" a& t W
) o8 Z$ D" q7 l& p' ^
2 A0 B1 ^, L) K8 T: [遍历链表是用宏list_for_each来完成。2 ]5 z& t8 x/ h
1 N7 `' E5 R! I! ^0 w
- #define list_for_each(pos, head) \
- for (pos = (head)->next; prefetch(pos->next), pos != (head); \
- pos = pos->next)
7 p* L8 Y' v' c V ' C9 _9 u4 Y- M( k& [) I: }
( @1 R0 K, Y( ^% ~在这里,pos和head均是struct list_head。在遍历的过程中如果需要访问节点,可以用list_entry来取得这个节点的基址。( C3 G5 D4 ~6 ^* t. V$ D _
' ]8 a. B; R9 _ b& K8 b- #define list_entry(ptr, type, member) \
- container_of(ptr, type, member)
+ K! H9 F4 j0 K/ J+ m7 X: Z1 V ! h' F( S. u, N' m6 U7 }: _6 }
0 _* y" j; Y) e$ i' W
我们来看看container_of是如何实现的。如下图所示,我们已经知道TYPE结构中MEMBER的地址,如果要得到这个结构体的地址,只需要知道MEMBER在结构体中的偏移量就可以了。如何得到这个偏移量地址呢?这里用到C语言的一个小技巧,我们不妨把结构体投影到地址为0的地方,那么成员的绝对地址就是偏移量。得到偏移量之后,再根据ptr指针指向的地址,就可以很容易的计算出结构体的地址。
/ t u. ^7 ~- Q8 G6 R- P6 E1 T
5 J% h3 c0 p9 R! u7 P
P! R1 K8 t; _
- F) u) L& w; Ilist_entry就是通过上面的方法从ptr指针得到我们需要的type结构体。
( F% I' ~9 H! l2 X# T$ c$ w5 ?: d3 I: ~* R4 W8 Q) Q
Linux内核代码博大精深,陈莉君老师曾把它形容为“覆压三百余里,隔离天日”(摘自《阿房宫赋》),可见其内容之丰富、结构之庞杂。内核里有着众多重要的数据结构,具有相关性的数据结构之间很多都是用本文介绍的链表组织在一起,看来list_head结构虽小,作用可真不小。
! q9 e8 I, \7 j
( o* }" V3 F( F+ z8 lLinux内核是个伟大的工程,其源代码里还有很多精妙之处,值得C/C++程序员认真去阅读,即使我们不去做内核相关的工作,阅读精彩的代码对程序员自我修养的提高也是大有裨益的。
9 Y# P- E& L4 u* c, M$ U
! e. _. e$ H6 S& A& ?, S( g8 B |
|