|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
9 M& X: I8 D$ ~" w; W5 O
matlab中有些计算结果比较长,直接查看有些困难,下面介绍pretty和symdisp函数优化输出结果,使结果更为直观。: k& Z4 Y7 v# W9 g/ m; n
% V% K+ c' i( j9 n/ u# ~) k' Q0 v' r
演示示例1
" h1 c' p* v4 k* {: V有一个计算结果如下:" O4 F% c$ y. G/ o/ s7 c! _3 Z% ^
! v3 {! l& s( U4 Q0 {- >> f1
- f1 =
- y^5 + (- w - y0)*y^4 + 1800*y^3 + (1498200*w - 1800*y0)*y^2 + (3600*w*y0 + 810000)*y - 1350810000*w - 810000*y0
- 5 I$ U( u, w& W
- L Z5 l" C% h. k0 _4 ?
% k- N' [% j& r1. 使用pretty函数美化输出
F1 n+ @- w% G4 r# Q- >> pretty(f1)
- 5 4 3 2
- y + (- w - y0) y + 1800 y + (1498200 w - 1800 y0) y + (3600 w y0 + 810000) y - 1350810000 w - 810000 y0
) r- W$ F7 {. Y/ P9 U: p 4 ~+ t2 S. Q$ U5 H
9 }0 x9 ?7 d+ L
该函数可使输出更接近数学格式。2 R' g; M( ?1 E7 a! v- q) O8 n
& n0 B$ P+ o R% ^, v5 S9 w
2. 使用symdisp函数美化输出
$ E& t& i) i9 Q; v1 W' O9 Y- symdisp(f1);5 o1 E1 h& _2 A% ^" N6 n0 y% x* M
; y6 V, ^ c w7 {6 p
+ I5 x, f* x |, W |# q8 J
0 \8 o* i4 g t7 K2 n2 D: P* A( \$ Y
演示示例2$ k9 D. T8 M+ W1 J$ V. u; F' P# s# K
有一个计算结果如下:
3 _# d! ^, X: ?) _' t s% r/ E/ S6 g* N" N7 X+ I3 Y
- >> F(3)
- ans =
- (y^2*((w - (2*w*y^2)/(y^2 + 900))/(y - y0) + 1))/60 - (25015*(w - (2*w*y^2)/(y^2 + 900)))/(y - y0) - (60*w*y)/(y^2 + 900) + 15
; O2 e; [( ?! b. K5 w' C& J
+ r& ?% K' b, A& b7 m; H$ C0 [9 k6 q& |( T# j4 t0 V
1. 使用pretty函数美化输出" W. K- E( B6 b5 t- |; H0 w8 _3 m
- >> pretty(F(3))
- / 2 \
- | 2 w y |
- | w - -------- | / 2 \
- | 2 | | 2 w y |
- 2 | y + 900 | | w - -------- | 25015
- y | ------------ + 1 | | 2 |
- \ y - y0 / \ y + 900 / 60 w y
- ----------------------- - ---------------------- - -------- + 15
- 60 y - y0 2
- y + 900
3 {: a9 V; R2 b5 l 8 }( C# q. O. I% u: t
6 d" f9 y# k: l0 J- f! G该函数可使输出更接近数学格式。& \) G4 S* d4 P+ t1 t! E" O! j! A
- }% u# c+ ^, R4 ^2. 使用symdisp函数美化输出
# _4 c( o; s5 g3 C; ^5 t- symdisp(F(3)); X2 {- L% Y' K6 x1 M
- D8 T$ w6 {& F+ l
' w t0 b# s1 `' T# s% |
9 I; J7 o4 R6 o/ ^8 Z" B! Q/ Q- X. c" T5 a
演示示例3
% M3 T6 o5 B0 I( Z7 v有一个计算结果如下:
; L; ]/ r0 D. `
( t7 ]; P' Q, b: `7 Q# Q- >> n
- n =
- [ -(2*x*(2*r^2 - 4*x^2 + 4*y*(w - y) - 1800))/(4*x^2 + 4*y^2 + 3600), -(2*y*(2*r^2 - 4*x^2 + 4*y*(w - y) - 1800))/(4*x^2 + 4*y^2 + 3600), (60*(2*r^2 - 4*x^2 + 4*y*(w - y) - 1800))/(4*x^2 + 4*y^2 + 3600)]( R2 J8 Y) ^1 @ @
5 P) g9 T4 K# b- F
& O/ X# P; x# |2 _. f7 E! a0 {: ?1. 使用pretty函数美化输出1 S: W B+ T9 m* R+ W# f
- >> pretty(n)
- / x #1 2 y #1 2 60 #1 \
- | - ------------------, - ------------------, ------------------ |
- | 2 2 2 2 2 2 |
- \ 4 x + 4 y + 3600 4 x + 4 y + 3600 4 x + 4 y + 3600 /
- where
- 2 2
- #1 == 2 r - 4 x + 4 y (w - y) - 1800
1 h5 x' `1 b4 R* {; x' ~
1 N: N2 h+ J$ d R. h2 s1 K+ x" H- P! v5 V0 {, O' D' L' m
该函数可使输出更接近数学格式。- f) u( Z Y5 [! s2 U, e% L, W
0 H) k( t. t S' K2. 使用symdisp函数美化输出
2 f" j1 V& m/ q2 a. P- symdisp(n);
4 k* g- O7 e' V+ ^1 q5 N7 W
& |7 n" l9 O- i6 z E5 k! s+ J+ B0 R& t R
) H+ B0 O" m6 V, ]' g. d& x* M( ]" h6 V5 g0 r! j, D2 R9 ]2 s
; e5 H' b: L5 S9 |! X7 V总结
0 p" ^* z5 m+ x$ p经过以上实验,发现symdisp函数可将输出结果转化为更易读的格式,且效果较好
7 t: R, c- X Y' t. g7 b: A1 n; q/ e2 |
附录:symdisp函数源码
! B/ K" A# i$ q, c0 C4 q4 b4 Q- function h=symdisp(s)
- %//SYMDISP Display a symbolic expression in human readable form.
- %// symdisplay(S) displays the symbolic expression S in a small figure window,
- %// using standard mathematical notation.
- %//
- %// Examples:
- %// syms x t positive
- %// f=taylor(cos(x));
- %// symdisp(f)
- %// f=int(exp(-t)*t^(x-1),t,0,inf);
- %// symdisp(f)
- %//
- %// Required toolbox: Symbolic Math
- %//
- %// See also SYMBOLIC PRETTY.
- if ~isa(s,'sym')
- s=sym(s);
- %error('输入参数必须是sym类型,请使用 sym() 将你的结果转化为sym类型.')
- end
- S=['$',latex(s),'$'];
- S=strrep(S,'&','& \quad');
- S=strrep(S,'{\it','\mathrm{');
- h=msgbox(S,'字符的数学展示形式');
- h1=get(h,'children');
- h2=h1(1);
- h3=get(h2,'children');
- if isempty(h3)
- h2=h1(2); h3=get(h2,'children');
- end
- set(h3,'visible','off')
- set(h3,'interpreter','latex')
- set(h3,'string',S)
- set(h3,'fontsize',20)
- w=get(h3,'extent');
- W=get(h,'position');
- W(3)=max(w(3)+10,125);
- W(4)=w(4)+40;
- set(h,'position',W)
- h4=h1(2);
- if ~strcmp(get(h4,'tag'),'OKButton'), h4=h1(1); end
- o=get(h4,'position');
- o(1)=(W(3)-o(3))/2;
- set(h4,'position',o)
- set(h3,'visible','on')
- set(h,'color','w');
! H; ]5 i, b7 L% h; V. a $ q. r0 X" N! F l ~
|
|