|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
高斯混合模型里面的参数可以用到混核主元分析里面吗?有混合概率主元分析的EM算法的程序吗' v" d% e8 m: p4 d* U1 N+ N8 ? G" `
function ppca_mixture 9 K; M K( \% [
filename = 'virus3.dat';
$ R6 p' k% }' ?: d" Z3 b3 L T = importdata(filename);
% m8 |# w; y P9 H [N, d] = size(T);
' m, M, q6 w3 r" ?7 N; [# V M = 3; % number of ppca analysers considered 考虑的ppca分析仪数量8 S. Z2 l, H. |8 {5 m
q = 2; % dimension of ppcas ppca的维数
: w$ g$ M' I& g$ W, s3 r % init
. Z2 f! k2 |* g; ~* S % initializing the posteriors (p(i|t_n), indexed by (n, i). R in text) Q, H$ [+ s, t+ d+ q. d& b
%初始化后验(p(i|t_n),在文本中由(n, i). R索引 # b5 g: m' x4 T& K
classes = [3, 3, 3, 3, 2, 2, 3, 1, 3, 3, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2];4 _2 B m9 W6 A' c) W* k
for n=1:N
/ c( w7 O/ R) [, h; q& c$ d for i=1:M$ v/ I& F+ G: R( B
if(i==classes(n))9 i7 m0 Q) E7 \0 ~* a3 B6 ^2 Y
posteriors(n, i) = 1;
! K0 \2 T& {4 @. l! ^2 O( N else
0 t6 m" o+ T6 V$ z; O& Q+ [ posteriors(n, i) = 0;
4 o( U$ }% w0 f* j' C end$ }; K6 {1 [5 s- ]7 U4 w r
end5 n6 k h, d" p, s8 I8 ]1 u
end
" T8 n/ g5 I+ c7 N7 H: v- k# w % precision for convergence checking 收敛检验精度: Q/ m% R( i+ n/ X4 U
epsilon = 0.01;) h+ H1 h0 { A! j+ n4 E
entered = false;
/ ?# Y' D! M: ~, X
, P! V2 L( X( u % loop5 _1 B6 w1 e% x. h& e
while(true)! ~6 c! {" p/ d' P, J0 D9 l
% updating priors (p(i), pi in text) and mean vectors (mu in text)
9 o% z/ V9 \+ A, n % 更新先验(p(i),文本中的pi)和平均向量(文本中的mu)6 c7 }& `1 }5 { M
new_priors = 1/N * sum(posteriors);
! ` ?, g% U6 k i0 R2 p1 ^ new_mus = zeros(M, d);+ p, W6 J& n; J
for i=1:M
( a& s6 \& Q) p& M( _4 A8 T for n=1:N
" k# i. P: @6 n new_mus(i, = new_mus(i, + posteriors(n, i) * T(n, ;
9 y+ R; o1 z, D0 B3 u* m end; X6 n8 k. Y. q& m2 t5 w+ u
new_mus(i, :) = new_mus(i, :) / sum(posteriors(:, i));3 b5 k; l, Z% k# x
end) ]! o8 q* V, U$ K( O
+ F( d& @1 [) a5 d
% computing covariance matrices (S in text)计算协方差矩阵(文本中的S). Y9 y# U' ~" D
covariances = cell(M);
/ f% E6 O# a. U1 S) Y5 v4 ` for i=1:M, d* x3 _) f2 ?+ B7 q
covariances{i} = zeros(d, d);
! y- y, c4 n+ P1 R. r# H3 S for n=1:N9 P: V5 L& E: \6 g% r
covariances{i} = covariances{i} + posteriors(n, i)*(T(n, :)' - new_mus(i, :)')*(T(n, :)' - new_mus(i, :)')';9 y- o; `: S: k+ Z5 f) P
end' G( ~+ U0 i2 S9 B. x
covariances{i} = covariances{i} / (new_priors(i) * N);
0 }9 i# u* q4 B" z1 x- L6 C& ` end4 e3 ?( A7 `0 j' L2 q( G
2 ?4 m7 j! A- X4 c" Y9 X( d. `/ E; b d2 b, C1 [( q$ }
% applying ppca using covariance matrices 使用协方差矩阵应用ppca
" M. a+ X% s/ G$ L# U % (Ws are weight matrices; sigmas are variances) (Ws为权重矩阵;(差异)
* f, Q6 E9 U. s1 n5 p1 U- ~ new_Ws = cell(M);
2 [6 e9 H. _9 P! P' h for i=1:M
1 W# v- h0 T; p3 T9 W8 {: c% c, F [new_Ws{i}, new_sigmas{i}] = ppca_from_covariance(covariances{i}, q);
, r/ d7 G& L6 I) C: k end
" R2 g, R* l3 _. q w; A) H) e$ w v; W' E6 w, e
% convergence check 收敛性检查1 ~' d4 t3 ]" @3 D. R8 C
if(entered && max(abs(new_priors - priors)) < epsilon && max(max(abs(new_mus - mus))) < epsilon && max(max(max(abs(cell2mat(new_Ws) - cell2mat(Ws))))) < epsilon && max(abs(new_sigmas - sigmas)) < epsilon)( m8 Q9 R; v- N6 B. Z
break;* ~4 s- ?1 F* h- E, l' d
end
$ ~) S1 v; a! w) w: E( h% k/ F; B# C7 m
% replacing old parameter values 替换旧的参数值% S6 k* | C% D8 J& d- ?
priors = new_priors;
/ F& u- Q2 A4 b* C1 x! h mus = new_mus;9 A, z7 h: [& J
Ws = new_Ws;% |( Z" q9 ?. U0 `
sigmas = new_sigmas;' f6 h/ N, u X
3 o1 w9 B! }3 v9 p2 d % computing the likelihoods (p(t_n|i)) 计算概率(p(t_n|i))6 a* Y# ]% e8 ^7 w3 t! a4 e# y1 S
for i=1:M
; @8 m! g' N2 d- f2 P2 C0 a# N C = sigmas{i}^2 * eye(d) + Ws{i}*Ws{i}';. ~) ]) ^, Q! o _! ~4 ]2 \
detC = det(C);
6 {; Z. C6 N2 q/ [% y8 q a5 U invC = inv(C);
2 W% a" y8 H$ S' S3 U, O for n=1:N
+ N3 a1 _" v% ?+ P/ v4 ]' g likelihoods(n, i) = (2*pi)^(-d/2)*detC^(-1/2)*exp(-1/2*(T(n, :)' - mus(i, :)')'*invC*(T(n, :)' - mus(i, :)'));
! `' G( z/ V! u1 o) C5 \& f end
1 }3 G9 _0 p9 D I0 n# ^' T! x end6 r0 q) E' V0 `2 q
% computing the joint probabilities (p(t_n, i)) 计算联合概率(p(t_n, i))
9 p3 r, i2 e! u8 H2 x" s) Y for i=1:M3 B* k. f5 v8 m1 }& ]6 V
joint(:, i) = likelihoods(:, i) * priors(i);% k1 A! _% P9 `
end
# o; ?7 s# ?: h* G % computing the data priors (p(t_n)) 计算数据先验(p(t_n)): i1 o5 D2 c, L. J3 d8 @
data_priors = sum(joint');* Z7 f+ h0 a7 j
% computing and displaying the likelihood of the data set 计算和显示数据集的可能性3 g* v0 r% e" f1 x& x. f/ u( I
disp(sum(log(data_priors)));% N# w( `% X4 ?$ W" p+ H1 w) z6 E9 c
% computing the posteriors (p(i|t_n), indexed by (n, i). R in text)
. V: J2 {1 I9 m/ H; W; P2 z % 计算后验(p(i|t_n),用(n, i)索引。R在文本中)" ~) }( X6 C; _4 T+ t# D
for n=1:N
* |8 R' P1 s$ Q% P$ s+ `+ D0 `* U' Y7 k posteriors(n, :) = joint(n, :) / data_priors(n);/ r9 T5 d' J& N8 o: O1 v
end5 @$ N! D& e% @. U; d
' U7 B) I4 E" w % we went through the loop at least once 我们至少做了一次循环8 [+ P( P+ e$ U* x: m
entered = true;7 p8 M8 y) N: N: o9 t. w: i. [5 b
end
9 E- A( S+ C9 G0 a9 u: w, D# \0 @5 h) [( d0 ?) w. W
7 P2 s+ G: d+ r: _, Y& O( g6 T % computing the latent variables 计算潜变量
& O: ~* t" k! G6 v latent = cell(M);
% I7 P1 a4 a. x2 p- Q( q0 T for i=1:M: ^6 d4 J/ s( a: C4 f4 W$ u
latent{i} = ppca_latent(T, Ws{i}, sigmas(i));$ K3 }8 u0 }3 h' ~3 ~
end" e* L# A6 s2 N% y% H" E: Z7 g
% selecting likely points for each ppca analyser 为每个ppca分析器选择可能的点
6 A5 t" i) F, h- e. Q8 h for n=1:N
: a. g0 v$ I7 j5 `2 e- U5 S( [ [~, i] = sort(posteriors(n, :), 'descend');# k/ v6 a7 p' t, K& H
points_to_classes(n) = i(1);. F5 I w: } B! w0 ~* p
end
) s4 n2 @, K/ ~/ l1 } classes_to_points = cell(M);3 p, K' b' `% J/ r" `" p, B- ?! N
classes_to_point_numbers = cell(M);
2 A& a' o; t3 ?$ p6 J for n=1:N
8 E' m/ Y& i% B- [* N classes_to_points{points_to_classes(n)}(:, end+1) = latent{points_to_classes(n)}(:, n);
; y5 g1 @* r( t: W2 Y& k. L classes_to_point_numbers{points_to_classes(n)}(end+1) = n;6 g9 T- E. |3 _3 W9 m
end' _$ U+ O3 J- }0 K( U
! K. {7 k# R/ j# H. m |7 H" ?
% display the results of the automatic classification 显示自动分类结果$ P) H) S* W* O d& w3 R, [/ S; h
for i=1:M4 V( ]6 V: ]. j7 U( H6 L
disp(classes_to_point_numbers{i});
1 }2 P- X0 ?5 b+ @ end
5 W+ S2 ]% ~7 w. {2 u" s
* Z5 x, v5 b! f/ K+ ?7 _% ^ ppca_plot2d(classes_to_points{1});7 s ^& y0 H1 q3 F
end
5 U9 ^9 z- P+ E9 x7 O |
|