找回密码
 注册
关于网站域名变更的通知
查看: 436|回复: 1
打印 上一主题 下一主题

#技术风云榜#基于非支配排序的多目标PSO算法MATLAB实现

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2020-11-12 13:35 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
#技术风云榜#基于非支配排序的多目标PSO算法MATLAB实现
* }) i* e1 C% P7 o) S0 T/ C  K3 k
8 G3 V. @9 t/ _% [0 |这一篇是Xue Bing在一区cybernetics发的论文,里面提出了两个多目标PSO特征选择算法,一个是NSPSO另一个是CMDPSO。
0 _* c/ j" N! D( G; f# p  m
6 T9 |: v+ y5 N伪代码
6 S9 w4 p3 }4 a) e/ Z
9 z( b* I* k; F( N) ~
# e- n# A+ a# k
: X+ a, q) l3 ^7 a# h! W! w1 k. D# g. l. o
具体流程0 n) Q% ]& h' l8 x
  • ①划分数据集为测试集和训练集
  • ②初始化PSO算法
  • ③迭代开始
  • ④计算两个目标值(论文中是特征数和错误率)
  • ⑤非支配排序
  • ⑥拥挤距离度量并排序
  • ⑥对每个粒子从第一前沿面选择一个粒子作为gbest,更新当前粒子
  • ⑦调整粒子群
  • ⑧迭代结束返回
    % |" N+ l5 f7 h% L$ O8 i" z
' R7 s! a* F8 r8 x
MATLAB实现:
  L- L! o% k2 Z0 O6 |) t; }4 g6 HNSPSO:7 q! p! f# Z1 F- x

( N1 n- C7 D' [4 U5 h) Y) g4 B注意其中FSKNN是我的问题的评价函数,包含两个目标值,都存入到pfitness中) W) @) X% r( Q1 z/ M: @! D

, ]% ^; v0 s  H8 j5 o) d* |, |! h
  • function [solution,time,pop,pfitness,site,LeaderAVE] = NSPSO(train_F,train_L)
  • tic
  • global maxFES
  • dim = size(train_F,2);
  • FES = 1;
  • sizep = 30;
  • pop = rand(sizep,dim);
  • popv = rand(sizep,dim);
  • pfitness = zeros(sizep,2);
  • LeaderAVE = zeros(1,2);
  • while FES <maxFES
  •     Off_P = zeros(sizep,dim);
  •     Off_V = zeros(sizep,dim);
  •     ofitness = zeros(sizep,2);
  •     for i=1:sizep
  •         [pfitness(i,1),pfitness(i,2)] = FSKNN(pop(i,:),i,train_F,train_L);
  •     end
  •     Front = NDSort(pfitness(:,1:2),sizep);
  •     [~,rank] = sortrows([Front',-CrowdingDistance(pfitness,Front)']);
  •     LeaderSet = rank(1:10);
  •     solution = pfitness(LeaderSet,:);
  •     LeaderAVE(1) = mean(solution(:,1));
  •     LeaderAVE(2) = mean(solution(:,2));
  •     for i = 1:sizep
  •         good = LeaderSet(randperm(length(LeaderSet),1));
  •         r1 = rand(1,dim);
  •         r2 = rand(1,dim);
  •         Off_V(i,:) = r1.*popv(i,:) +  r2.*(pop(good,:)-pop(i,:));
  •         Off_P(i,:) = pop(i,:) + Off_V(i,:);
  •     end
  •     for i=1:sizep
  •             [ofitness(i,1),ofitness(i,2)] = FSKNN(Off_P(i,:),i,train_F,train_L);
  •     end
  •     temppop = [pop;Off_P];
  •     tempv = [popv;Off_V];
  •     tempfiness = [pfitness;ofitness];
  •     [FrontNO,MaxFNO] = NDSort(tempfiness(:,1:2),sizep);
  •     Next = false(1,length(FrontNO));
  •     Next(FrontNO<MaxFNO) = true;
  •     PopObj = tempfiness;
  •     fmax   = max(PopObj(FrontNO==1,:),[],1);
  •     fmin   = min(PopObj(FrontNO==1,:),[],1);
  •     PopObj = (PopObj-repmat(fmin,size(PopObj,1),1))./repmat(fmax-fmin,size(PopObj,1),1);
  •     % Select the solutions in the last front
  •     Last = find(FrontNO==MaxFNO);
  •     del  = Truncation(PopObj(Last,:),length(Last)-sizep+sum(Next));
  •     Next(Last(~del)) = true;
  •     % Population for next generation
  •     pop = temppop(Next,:);
  •     popv = tempv(Next,:);
  •     pfitness = tempfiness(Next,:);
  •     fprintf('GEN: %2d   Error: %.4f  F:%.2f\n',FES,LeaderAVE(1),LeaderAVE(2));
  •     FES = FES + 1;
  • end
  • [FrontNO,~] = NDSort(pfitness(:,1:2),sizep);
  • site = find(FrontNO==1);
  • solution = pfitness(site,:);
  • LeaderAVE(1) = mean(solution(:,1));
  • LeaderAVE(2) = mean(solution(:,2));
  • toc
  • time = toc;
  • end
    ! x2 a: o" M8 }' U! x

; @1 R; W. y+ m$ `  q7 V. K6 U1 s9 u- F  M( y9 C
拥挤距离代码:
: j( Q! P3 E, c" s+ a# k: V8 q! l' R2 o
  • function CrowdDis = CrowdingDistance(PopObj,FrontNO)
  • % Calculate the crowding distance of each solution front by front
  • % Copyright 2015-2016 Ye Tian
  •     [N,M]    = size(PopObj);
  •     CrowdDis = zeros(1,N);
  •     Fronts   = setdiff(unique(FrontNO),inf);
  •     for f = 1 : length(Fronts)
  •         Front = find(FrontNO==Fronts(f));
  •         Fmax  = max(PopObj(Front,:),[],1);
  •         Fmin  = min(PopObj(Front,:),[],1);
  •         for i = 1 : M
  •             [~,Rank] = sortrows(PopObj(Front,i));
  •             CrowdDis(Front(Rank(1)))   = inf;
  •             CrowdDis(Front(Rank(end))) = inf;
  •             for j = 2 : length(Front)-1
  •                 CrowdDis(Front(Rank(j))) = CrowdDis(Front(Rank(j)))+(PopObj(Front(Rank(j+1)),i)-PopObj(Front(Rank(j-1)),i))/(Fmax(i)-Fmin(i));
  •             end
  •         end
  •     end
  • end! J. k( q9 z9 N; G% p2 ^/ {# }

1 w3 M, j6 u( b% F: M
3 ?; l/ W/ F, a    Truncation.m代码:, W. m; c: @* x* y( K, ~

$ O$ e6 N; Y1 p/ d4 S9 C
  • function Del = Truncation(PopObj,K)
  • % Select part of the solutions by truncation
  •     N = size(PopObj,1);
  •     %% Truncation
  •     Distance = pdist2(PopObj,PopObj);
  •     Distance(logical(eye(length(Distance)))) = inf;
  •     Del = false(1,N);
  •     while sum(Del) < K
  •         Remain   = find(~Del);
  •         Temp     = sort(Distance(Remain,Remain),2);
  •         [~,Rank] = sortrows(Temp);
  •         Del(Remain(Rank(1))) = true;
  •     end
  • end
    0 w6 U0 T4 F7 W" S! }- ?

3 \% M' d3 A0 ~4 O5 ]) W! }) S1 S% `/ p6 ?4 m
  
$ o" b( z5 c! O2 h0 E+ G% q2 c

该用户从未签到

2#
发表于 2020-11-12 14:19 | 只看该作者
基于非支配排序的多目标PSO算法MATLAB实现
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-11-24 09:04 , Processed in 0.156250 second(s), 26 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表