TA的每日心情 | 怒 2019-11-20 15:22 |
|---|
签到天数: 2 天 [LV.1]初来乍到
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
! p: D2 k* h, f2 q8 R1 x2 N
(1)序列前向选择( SFS , Sequential Forward Selection ); V1 K8 C6 V5 s* n6 U" I. L( }
9 K+ P, Y3 f+ v) |0 H7 W
算法描述:特征子集X从空集开始,每次选择一个特征x加入特征子集X,使得特征函数J( X)最优。简单说就是,每次都选择一个使得评价函数的取值达到最优的特征加入,其实就是一种简单的贪心算法。
% D* O) w0 C& E* g
: m5 E: p0 X8 w! {
5 M" ~8 m) y8 ~( k7 g8 C! ]7 ^5 Q& I+ Q
1 z$ \: ^0 `8 R6 e0 @( r
! J1 m4 ]/ p9 j9 r* Q( Z算法评价:缺点是只能加入特征而不能去除特征。例如:特征A完全依赖于特征B与C,可以认为如果加入了特征B与C则A就是多余的。假设序列前向选择算法首先将A加入特征集,然后又将B与C加入,那么特征子集中就包含了多余的特征A。3 S: p) V5 F( m" ?8 i7 L
' m, G& ~6 N# v8 u4 t8 \代码:
5 M9 B Y. ?1 J, ]! K+ Z' `" W( f X8 V; B
- %----4.17编 顺序前进法特征选择 成功!
( J8 |9 r5 R2 {; i- clear;
- clc;
- %--------特征导入 请自行修改
- * Z, R* u/ Y: {3 C0 x! |' g9 e
- M=512;N=512;
- load coouRFeature16_0521_Aerial1 %%%共生矩阵 96.14%
- wfeature{1}=coourfeature(:,1);
- wfeature{2}=coourfeature(:,2);
- wfeature{3}=coourfeature(:,3);
- load fufeature_0521_SARAerial1_512%%复小波 98.26%
- for i=1:13
- wfeature{3+i}=wavefeature(:,i);
- end
- load wavefeature_0521_SARAerial1_512%%%非下采样小波 97.58%
- for i=1:7
- wfeature{16+i}=wavefeature(:,i);
- end
- load wavefeature_0521_Aerial1%%小波 97.65%
- for i=1:7
- wfeature{23+i}=wavefeature(:,i);
- end
- % load rwt_cofeature96_0423_lsy1
- ; g: w: X/ S8 t1 v9 `
- % for i=1:96
- - a% ]7 @7 K# \9 H t/ S
- % wfeature{30+i}=feature(:,i);
5 v7 ?9 M8 |. Y# D3 y9 M( Q2 Q9 o- % end
8 i% G1 D+ l/ ]' h1 ~8 [1 t" u( N: Y, R- %%%%%%%----------归一化
( n+ |) m! \" m7 R: X# t+ ]( e+ E9 M- [m n]=size(wfeature{1});
- for j=1:30%一共30组特征 这里 请自行修改
- mx=max(wfeature{j});
- mi=min(wfeature{j});
- mxx=(mx-mi);
- mii=ones([m n])*mi;
- wfeature{j}=(wfeature{j}-mii)./mxx;
- end
- %%---------------SFS 先选4个特征尝试
- 3 ~5 i# }: N# k& L& s
- chosen=[];%%表示已选的特征
- chosen=[chosen 1];
- Jc=0;%%选出的J值
- for j=1:5 %选5个特征
- J=zeros([1 30]);
- for i=2:30 %一共30组特征 这里 请自行修改
- [mm nn]=size(chosen);
- for p=1:nn
- if i==chosen(p)
- J(i)=0;
- break;
- else
- J(i)=J(i)-sum(sum((wfeature{i}-wfeature{chosen(p)}).^2));
- end
- end
- end
- mi=min(J);
- for i=1:30
- if J(i)==0
- J(i)=mi;
- end
- end
- ma=max(J);
- for i=1:30
- if J(i)==ma
- chosen=[chosen i];
- break;
- end
- end
- end
- save Aerial1_6t_chosen chosen
- [mm nn]=size(chosen);
- tezh=[];
- for i=1:nn
- tezh=[tezh wfeature{chosen(i)}];
- end
- %%%%%%%%聚类
1 f+ `9 `% y# x8 q0 E+ p) j' x$ X- r7 T- [IDC,U]=kmeans(tezh,2);
- cc(IDC==1,1)=0;
- cc(IDC==2,1)=0.75;
$ M4 ?; {3 E2 O$ f3 L- g=reshape(cc,M,N);
- figure,imshow(g);0 X% m$ ~; O" P, \7 f" o
; w$ V4 s9 F9 T$ g x* G; ?: v; F4 A6 @
(2)序列后向选择( SBS , Sequential Backward Selection )- b: L$ Q( }! U3 Y
( u) Y. c7 N2 v& F* d# y4 |& e C
算法描述:从特征全集O开始,每次从特征集O中剔除一个特征x,使得剔除特征x后评价函数值达到最优。
: A0 X& T2 ?& \9 @( b% o: b# j8 [# W) G2 I
算法评价:序列后向选择与序列前向选择正好相反,它的缺点是特征只能去除不能加入。4 F( b/ v6 Y1 ]$ f
1 v/ |4 g& ^! U/ m" W/ K
, r% C" ^. h: n
( V5 F8 ^/ `( M$ t7 x
代码:
6 r3 r; C' ], C. p# ] F2 P
# R3 ~- u9 N+ L2 h- %----4.17编 顺序后退法特征选择
- - g$ @: y8 s1 [4 k. @
- clear;
- clc;
- %--------特征导入 请自行修改
" M/ }1 _3 u" h" v- O- A=imread('lsy1.gif');
- [M N]=size(A);
- load coourfeature_0414_lsy1 %%%共生矩阵 96.14%
- feature{1}=coourfeature(:,1);
- feature{2}=coourfeature(:,2);
- feature{3}=coourfeature(:,3);
- load fuwavefeature_0413_lsy1 %%复小波 98.26%
- for i=1:13
- feature{3+i}=wavefeature(:,i);
- end
- load wavefeature_0413_feixia_lsy1%%%非下采样小波 97.58%
- for i=1:7
- feature{16+i}=wavefeature(:,i);
- end
- load wavefeature_0417_lsy1%%小波 97.65%
- for i=1:7
- feature{23+i}=wavefeature(:,i);
- end
- %%%%%%%----------归一化-归一化
- ) `3 k/ Y8 Z- g! D8 G) |" ~2 |% E
- [m n]=size(feature{1});
- for j=1:30%一共30组特征 这里 请自行修改
- mx=max(feature{j});
- mi=min(feature{j});
- mxx=(mx-mi);
- mii=ones([m n])*mi;
- feature{j}=(feature{j}-mii)./mxx;
- end
- %%---------------SBS
- 1 h7 N" ^* I% t& L$ {3 G( M
- chosen=[];dele=[];
- for i=1:30
- chosen=[chosen i];
- end
# r$ ^2 l1 J! Z6 W4 n: g; Y- for j=1:24 %%删10个,留20个
- J=zeros([1 30]);ii=0; %J(1)是删1的结果,J(2)是删除2 的结果......
- for i=1:30 %???dele 是必要的么???????????????????????%一共30组特征 这里 请自行修改
- [mm nn]=size(chosen);
- for p=1:nn
- if sum(i==dele)~=0
- J(i)=0;
- break;
- else
- for q=1:nn
- if (chosen(q)~=i) & (chosen(p)~=i)
- J(i)=J(i)-sum(sum((feature{chosen(q)}-feature{chosen(p)}).^2));
- end
- end
- end
- end
- end
- mi=min(J);
- for cc=1:30
- if J(cc)==0
- J(cc)=mi;
- end
- end
- [ma we]=max(J);
- dele=[dele we];
- for dd=1:nn
- if chosen(dd)==we
- chosen(dd)=[];
- end
- end
- % chosen=[2 4 5 6 7 8 9 11 12 13 14 19 20 22 23 26 27 28 29 30];
- ( H, a' E( \* X4 z) P% \
- [mm nn]=size(chosen);
- tezh=[];
- for i=1:nn
- tezh=[tezh feature{chosen(i)}];
- end
- %%%%%%%%聚类
0 Q( v5 l ]- J2 B- [IDC,U]=kmeans(tezh,2);
- cc(IDC==1,1)=0;
- cc(IDC==2,1)=0.75;
- g=reshape(cc,M,N);
- figure,imshow(g);
- %%%%%%%%%%%%计算正确率
- A) _4 A3 a2 S9 |" M/ D9 }8 r
- ju=ones(M)*0.75;
- for i=1:M
- for j=1:M/2
- ju(i,j)=0;
- end
- end
- ju2=g-ju;
- prob=prod(size(find(ju2~=0)))/(m*n)
- 1-prob+ R9 y! W+ t9 Q& {
0 {" I; H) a( U+ n$ c
2 S0 W" I8 D2 T3 Q5 v" E# S. {
另外,SFS与SBS都属于贪心算法,容易陷入局部最优值。 |
|