|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
最大信息系数 maximal information coefficient (MIC),又称最大互信息系数。
, X s3 U8 H5 b( Y
6 n8 |5 s. C$ r, U) y特征选择步骤
6 P! U4 ]7 P" y) t
( q% j! V' d, Q; n1 S①计算不同维度(特征)之间的MIC值,MIC值越大,说明这两个维度越接近。
& n2 K+ x& c# I/ R' S2 e, \# R②寻找那些与其他维度MIC值较小的维度,根据阈值选出这些特征。
; l) {$ ^" v8 i& N1 X) X! b) P! v③利用SVM训练
8 {0 ?+ v0 U7 }' y+ s2 ]/ }④训练结果在测试集上判断错误率
# v4 H' d7 A! e3 f, G" R( H- a% O1 @
6 l* K) r5 O; _4 O, [0 n% W% sMATLAB代码:; b3 p- V* V0 v5 K6 j& @ F
5 e) {& x8 l' m M9 j% O# T# A* N" s8 V
- clc
- load train_F.mat;
- load train_L.mat;
- load test_F.mat;
- load test_L.mat;
- Dim = 22;
- MIC_matrix = zeros(Dim, Dim);
- for i = 1:Dim
- for j = 1:Dim
- X_v = reshape(train_F(:,i),1,size(train_F(:,i),1));
- Y_v = reshape(train_F(:,j),1,size(train_F(:,j),1));
- [A, ~] = mine(X_v, Y_v);
- MIC_matrix(i, j) = A.mic;
- end
- end
- MIC_matrix(MIC_matrix>0.4) = 0;
- MIC_matrix(MIC_matrix~=0) = 1;
- inmodel = sum(MIC_matrix);
- threshold = sum(inmodel)/Dim;
- inmodel(inmodel <= threshold) = 0;
- inmodel(inmodel > threshold) = 1;
- model = libsvmtrain(train_L,train_F(:,inmodel));
- [predict_label, ~, ~] = libsvmpredict(test_L,test_F(:,inmodel),model);
- error=0;
- for j=1:length(test_L)
- if(predict_label(j,1) ~= test_L(j,1))
- error = error+1;
- end
- end
- error = error/length(test_L);
. z. `3 K6 w( T2 \8 Z" ]) u& N |
|