EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
Filter DataFilter Difference Equation(滤波器差分方程)滤波器是一种数据处理技术,可以消除数据中的高频波动或从数据中去除特定频率的周期性趋势。 在MATLAB®中,滤波器功能根据以下差分方程过滤数据x的向量,该差分方程描述了抽头延迟线滤波器。 4 b I1 B R- Z6 c/ A4 T3 {
) P% B' s8 S3 M$ U& W& z \在该等式中,a和b是滤波器系数的矢量,Na是反馈滤波器阶数,Nb是前馈滤波器阶数。 n是x的当前元素的索引。 输出y(n)是x和y的当前元素和先前元素的线性组合。 滤波函数使用指定的系数向量a和b来过滤输入数据x。
Moving-Average Filter of Traffic Data6 Q6 m+ x( o x+ D
滤波器功能是实现移动平均滤波器的一种方法,这是一种常见的数据平滑技术。
) K+ e2 n" v. W) bThe following difference equation describes a filter that averages time-dependent data with respect to the current hour and the three previous hours of data. (以下差分方程描述了一个过滤器,它根据当前小时和前三个小时的数据平均时间相关数据。)
导入描述流量随时间变化的数据,并将第一列车辆计数分配给向量x。
3 D% j3 z( n7 L: y2 _/ z3 `' f& Q
% c' U% j" Z; A% zclc
2 N; h% ~5 a) N/ e
# O8 G3 X/ D5 d3 }& } C
0 H$ z" K9 F6 n" u2 g& }! o! \, n& I* H! r9 h
clear
% S" H E# c9 ]" _( v
2 P* j. c$ Z# q- 8 k* X) S- \) v$ o$ S5 \
+ z# o- Q W' G7 U- j0 a# Z/ `
close all& V8 d; l& |& Y: ?* M
( ?$ _) T5 r6 \* Z2 N
3 C" q0 {/ k" I) Q$ @8 E9 z1 o" e! d* H- J. J5 [, l1 r5 m
! l* ^/ Q. T0 K6 Z
: z9 i! i$ L5 A; K4 u& \2 ~
- 3 t& t/ z# Y& b# q, W+ r. L1 I& ^7 E
+ \# F& s) `0 V( H& ?+ t- l% Import data that describes traffic flow over time, and assign the first column of vehicle counts to the vector x.
, R1 z" ^8 N- W }6 ^& H
5 M ^+ F( m. W5 P! G8 i - + D' r" F. V5 w( i: q, @" u$ M
! {7 A6 ? F; E* ?
load count.dat6 U& {$ T! l/ I n
- n0 d8 m( P: ?. _/ D: s; Z6 o
. Q; A: s1 s* ^
' W# Y/ {& W8 y, e: X0 C8 a6 ix = count(:,1);
! }% r- J+ S2 v, v0 R
- D5 M2 G3 d2 D* q+ Z- ! {% G8 A8 m) @
6 L" v9 v. Z6 w! t
) w+ r6 ^) K2 K8 h% ?0 W6 }$ n& O R8 k p
, g! t- e/ ]2 i9 _+ j9 F6 J% L% ^1 k6 H
% Create the filter coefficient vectors.
% _, x9 U% w7 M o3 A3 d- I% T
, v4 I$ @( R' A# D( m( V8 q! R9 |) X- 3 { a6 ~; Y# ^' P
( Y q1 i( I* x5 A! `; x. N; H; Ga = 1;+ g5 ?0 Q1 r9 a5 p( Z0 g
. J3 b) o, x9 A8 B
0 ]) [; L) E/ x D' Z) n3 T! S1 e' v) R9 ]4 e2 K% h+ V v# x
b = [1/4 1/4 1/4 1/4];, r, p5 C# g6 _( g% {
9 S6 x+ \/ k: r/ A
( P/ a) t" d& |
% E1 _7 z) K% a, T; t8 b# {0 z
) Y7 Q, d2 M1 m9 A' X p5 T5 s( j J- I: W
- : H8 w k3 D% ?' C' k- U
; n4 i1 g6 S) n. W6 L3 m. G# v% Compute the 4-hour moving average of the data, and plot both the original data and the filtered data.
3 j* p, E3 T* j2 V. t; ~( A7 c8 `* X, q# e/ a
0 ]. _- ^8 s8 K! K" B5 [. e
6 R) A' D+ ^- Z& ~y = filter(b,a,x);8 b, m' J! S- b% [" | e
2 P/ p: b( ~8 n0 f' F) T& ^
$ _( E7 F/ v% U# _( y: d7 z: V0 p& k; K! B
* B4 ]1 A @# _3 i, ?2 m E& [" S; Z7 g4 K5 C* R
- 4 \; W1 y4 {, o; Q4 D8 l/ j
% b9 ^8 p. Z, R N) |2 Q7 T" Lt = 1:length(x);
3 Y* M1 u& U0 e) i5 p+ R
. n9 L; {, Q6 s+ W; q: i% e
( k8 u3 A# z: G" n7 I1 t$ n- }7 _) a# x3 `. R
plot(t,x,'--',t,y,'-')1 J/ o/ { Y- l/ W
- W) E, m: d: J, H5 U7 W' v- 5 H. t6 k G; J7 T% P3 a
8 h" J. z$ V6 B# Tlegend('Original Data','Filtered Data')1 ~9 m1 O) {2 D
0 n T1 r9 t. [% h
' i$ z0 y" I8 Z" U" u, @: h' T& @ W/ c0 k O
9 N9 h6 B8 Y0 }6 F5 R& q
% d2 d4 Q+ R& Y$ I& l# X6 Q6 `/ I, w/ o- h/ X- m: C
Modify Amplitude of Data
; b1 Z. M' }* xThis example shows how to modify the amplitude of a vector of data by applying a transfer function.
% P0 K' f' ?/ [: v5 G! x, KIn digital signal processing, filters are often represented by a transfer function. The Z-transform of the difference equation
此示例显示如何通过应用传递函数来修改数据矢量的幅度。' {5 V, I' }( g# ^/ A6 [- ^. B! Z# D
在数字信号处理中,滤波器通常由传递函数表示。 差分方程的Z变换
8 d& s/ f; P& [/ |
. h. M( z4 S- C5 u- ^, _/ Lis the following transfer function.
Use the transfer function
to modify the amplitude of the data in count.dat.
# r. x+ h4 }0 Z9 g) M- E& B3 @# g, g" u, X5 o a
clc
3 t) n7 q9 `: R! J0 i
: c K" o7 N, }1 R! h
0 }. Q. T, _1 l" [: V" l2 k; [5 O6 o& @9 Q; z
clear
5 A: S" M& M0 q+ m+ K, T6 q8 J1 g3 F" Y; C
- & {( M7 v/ I, P* e h- B7 A9 t$ g
: B8 i* ^3 h1 g$ [0 Q5 `close all- k5 `8 Z7 r S" G7 Q7 L$ g
8 X9 i/ ]: L- b5 e
( c b: s, D" B: V
8 d# X- R% Y0 Q, h. Q2 ^ t5 V/ G6 H! f+ D) K- L
. u1 q' M; K* M! q# C2 M
! O4 \/ f S7 C( g/ P7 c$ s
' L, J" c7 y$ O& ^" U. m- F3 c; I% Load the data and assign the first column to the vector x.
0 f; ~/ f4 I0 Z: K) S/ I
' L/ Q( C+ t6 h# L9 ?- / \: v) \% L( \5 D$ P: p
" `" J, A3 z, R: m
load count.dat
% A/ [$ B* b, G- |% a7 Z
t7 J: C* H% B+ E1 _/ r# \; P - & I+ T6 t! d; U
' J' X# o8 f! h f- Gx = count(:,1);
7 _0 [% U7 }' \9 C9 d( l% }- m y9 w" j8 s1 p8 T2 \# r N* ]
3 w' J' ^ a2 h* O9 l1 {! O8 v# h8 ]- F F- h2 g, q
- I# C, Q$ l! [2 D! a% L' A) I
0 i! H; G. r+ ?6 W- ( E. T9 w0 L" a+ W5 K3 i
4 z/ U, ~0 D0 @+ H
% Create the filter coefficient vectors according to the transfer function .
; n4 J, m8 V% w1 l( b# G! B, G O6 b) P, `6 m- M7 \0 E
- : @0 T% k% i5 i- R5 j5 ~2 w9 B
" s( k; t# }6 X7 L8 da = [1 0.2]; d# j* e @4 H, W$ i
& w6 U8 n2 l5 m5 W& G4 {" B - 4 s. a8 w1 `' g5 C' h4 p1 C
& t% V C% J" u0 H
b = [2 3];
1 B- q7 Z0 T5 ^& \3 t9 X h. g, m) J' c3 R+ b$ M" ?
- 7 f8 N0 v s) |# }; p
# s# m3 V3 h( h7 I! a, [
( o9 U: C! ~6 R3 y4 q P6 {* Q: [* {% V# g5 ]8 d! _* M3 \
- " U/ y. k$ N. M( H6 V) G. p! f
4 L. V( s+ H7 A# d% ?. G% Compute the filtered data, and plot both the original data and the filtered data. This filter primarily modifies the amplitude of the original data.
) f5 h5 u6 b3 C
3 l/ u: D% U9 `+ d: a! ? - 5 W0 Y. G: r/ d G M, S" l6 ^4 J
5 `. x* C1 T4 g( c, `y = filter(b,a,x);* P5 K, I; Y4 I6 r8 Y
, b) y) B# o7 _3 D9 F6 m
- ( U# o( B' f0 j" a) n
- k1 b" ^6 y# u$ n; J' p4 r
# A1 V; K/ l+ e* u" H' U
* h9 R+ ^% A9 F
- ( e$ M- }7 ]* Q* `" w
4 @% d. ^) ?- E3 L2 tt = 1:length(x);1 p0 I2 P) R+ q4 j! D
1 `, @( ^* ]1 c" z( @/ B
* W& q7 z; u) x" H: s! U* _9 W' P$ F( i# u( @" [8 o5 g
plot(t,x,'--',t,y,'-')
* [- {' j; ~9 g1 a B* J- y* q; ?' G J! ]' T& Y
* l& W7 n8 ]/ e& X& l$ l0 G
! X; E# P3 |" M1 K8 k Qlegend('Original Data','Filtered Data')
l( D0 B o+ Y4 a! q" k! M' b$ V, j- m' p- {: T
2 `: ]3 c% G& f& J' @; u: G2 q' K( j: e$ P6 }
; U' [/ j( Y% |1 M/ l
- l4 \( V6 j4 H$ Q) v- a' k2 j
% F* U0 {& C0 I7 A8 } f/ d
9 [" v. g3 ^% a5 S2 @8 B
9 g$ ~$ k3 x0 g9 ?
# G# p4 L: M5 [9 `$ Y3 Q; K3 o |