找回密码
 注册
关于网站域名变更的通知
查看: 421|回复: 1
打印 上一主题 下一主题

NSGA2算法MATLAB

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2020-5-20 10:18 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
那个NSGA2的算法不具有普遍性,下面参考课国外的课题小组的代码重新修改了内部冗余内容,使之能够自定义优化函数。
- @6 r6 r3 g; Y( x) D $ [: @9 L+ c+ a& K/ C! n

9 Z& u7 a7 G( H6 HNSGA2的过程为:2 U* j$ \" U$ C; y0 }- W4 G, u

% F* n9 l- a  y1、随机产生一个初始父代Po,在此基础上采用二元锦标赛选择、交叉和变异操作产生子代Qo, Po 和Qo群体规模均为N
* u  I' b2 |" r9 X, u
1 |$ w2 k7 {& Z$ ?, s+ `: D7 [, x$ w2、将Pt和Qt并入到Rt中(初始时t=0),对Rt进行快速非支配解排序,构造其所有不同等级的非支配解集F1、F2……..) T- f  T! B% o$ C* g( G/ v
9 K% L% F5 D% G$ G/ p4 l1 G
3、按照需要计算Fi中所有个体的拥挤距离,并根据拥挤比较运算符构造Pt+1,直至Pt+1规模为N,图中的Fi为F3
- \4 a4 x" H" [. D  }' I' {* U5 `  A
( q9 s6 k, r+ _0 [1 B下面是完整版的代码:" g) _4 r6 ~- E1 b
; F+ k; V  |  B+ D# N' g: E
①nsga2-optimization.m5 Y2 p; e% x4 h$ o
2 x0 j# j+ }  o! ^1 l+ K; i% @
function nsga_2_optimization
+ P+ I- M8 z6 k! R# ^) g6 M%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%7 X2 |) W8 E; j7 K
%此处可以更改
' w$ q. v( Q1 ~6 Z%更多机器学习内容请访问omegaxyz.com- b- A2 h% s0 X/ c4 Q
pop = 500; %种群数量
( ^5 p/ v: @% j/ c8 b# Egen = 500; %迭代次数/ @9 `3 D# P. N5 G7 `
M = 2; %目标数量7 X7 u" r$ x7 s9 o
V = 30; %维度
1 M  A* V+ R; dmin_range = zeros(1, V); %下界
  o. X1 H" F* f3 A" ?max_range = ones(1,V); %上界
! a9 z9 Q/ q9 P+ z7 m% u%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# I6 D8 S  X; i3 R! e$ ?chromosome = initialize_variables(pop, M, V, min_range, max_range);+ N9 P6 q& _* c* Q
chromosome = non_domination_sort_mod(chromosome, M, V);) H  l( r5 o/ T: @

, F# N* r# W+ }+ Yfor i = 1 : gen
9 k  z5 ]: z! M. O  J3 q    pool = round(pop/2);
: i4 B# d( e2 }/ I0 [    tour = 2;
" O( h' U! n( t: O$ [& j% R    parent_chromosome = tournament_selection(chromosome, pool, tour);
4 r* U, }; k1 I8 @, {9 U6 _    mu = 20;
  m) b; t, ]2 V" U$ R    mum = 20;
9 l1 U7 l% o1 v1 q0 J  ]    offspring_chromosome = genetic_operator(parent_chromosome,M, V, mu, mum, min_range, max_range);
3 v5 S; a8 ^9 z$ f; m    [main_pop,~] = size(chromosome);  Q3 p5 N) ~5 A$ P2 W
    [offspring_pop,~] = size(offspring_chromosome);' w! W8 c- @$ ^; K
    clear temp5 H8 K- {# u5 ?! a
    intermediate_chromosome(1:main_pop,:) = chromosome;5 ?. J# ~% y$ C' E
    intermediate_chromosome(main_pop + 1 : main_pop + offspring_pop,1 : M+V) = offspring_chromosome;+ h: G( i$ S4 z0 b
    intermediate_chromosome = non_domination_sort_mod(intermediate_chromosome, M, V);
% M. [) M: \; z" l. `, X% z    chromosome = replace_chromosome(intermediate_chromosome, M, V, pop);& [$ t4 X- I$ |0 B& \5 o
    if ~mod(i,100)
; ^0 I4 Q5 M% E: N. a" a* j/ V& q        clc;1 ^. H% p4 @! A
        fprintf('%d generations completed\n',i);
2 l8 i; D3 V7 K8 p& J/ L    end
# _& V  l* _& c/ ^0 u; B7 `end
- ^6 h9 P# H) I0 m4 ?" H( F; e, C  T" Q6 K6 T$ n  L2 P2 E+ O
if M == 2
) r0 I' \/ I  M' D3 m, [7 V( y& @, o    plot(chromosome(:,V + 1),chromosome(:,V + 2),'*');2 N' g9 s+ I+ r4 ], _0 \7 P8 Z
    xlabel('f_1'); ylabel('f_2');' m4 k% I" P( [3 p9 x+ J7 r
    title('Pareto Optimal Front');
  r2 y. {/ c& {6 }, f+ _elseif M == 3
, n' x' o1 [# v! E4 r    plot3(chromosome(:,V + 1),chromosome(:,V + 2),chromosome(:,V + 3),'*');" l! J8 \, p) B# W, K
    xlabel('f_1'); ylabel('f_2'); zlabel('f_3');, d2 B+ L: [/ @. V: J# T
    title('Pareto Optimal SuRFace');* M) f0 C) e) q! {/ ^8 ]; g# ]9 v
end
. L1 G% g/ [, E0 i: g$ r" x6 @* }( S- ?6 X+ G: p. I4 p" n

! s) \7 d. @" W8 l# `0 w8 H②initialize_variables.m0 j' \& G! _& F: y9 `; q, k& E# s

3 B0 v3 E: F9 S$ E) ufunction f = initialize_variables(N, M, V, min_range, max_range)
& x: L' P/ I! E" Kmin = min_range;
& i9 W6 n6 \2 _8 l+ tmax = max_range;6 J+ X' i+ ~6 n; V8 q0 h) U
K = M + V;7 y. ^( r; g2 }( x, W* ^& ^
for i = 1 : N
: g* x# t0 ^1 t5 G# Q    for j = 1 : V
; w  O* }3 m4 l. j9 o( Y+ O. a/ R        f(i,j) = min(j) + (max(j) - min(j))*rand(1);+ w  h% T8 f, `0 h1 Q8 P
    end4 w+ N" w2 u3 i  s$ ?# O6 D
    f(i,V + 1: K) = evaluate_objective(f(i,:), M, V);0 M! z' n! A' c: ]
end
5 x5 w3 w; e" k
( d4 U3 h" m9 B2 J
+ K- t2 W8 h4 c9 i+ d* D③non_domination_sort_mod.m. Q; p8 o3 L# j) q2 x2 b
( A. z, a+ R" ~+ h- y
function f = non_domination_sort_mod(x, M, V)8 @+ C' j2 r$ H. s0 L
[N, ~] = size(x);! N* _8 i$ o$ O2 J0 M7 X% d
clear m
9 S/ ]9 u% _1 ^front = 1;
; ?" Y  ~, f' C8 fF(front).f = [];
4 ~+ d3 l% c. ~( a2 p  xindividual = [];9 T+ J5 f- u! x( K
3 g3 v- y4 O2 X
for i = 1 : N
1 O9 f7 u+ ~& K, x# v: A    individual(i).n = 0;4 u$ I8 ~/ e# d' m0 l! b
    individual(i).p = [];8 C: r3 P. z( @* n9 V
    for j = 1 : N
7 q# C: `2 ]: k7 V" e* j        dom_less = 0;
, Q3 |! H  F- O& F0 v- W& U        dom_equal = 0;
! \/ N% T. c( O        dom_more = 0;
( M8 h, z" w2 w1 d5 R- A        for k = 1 : M- l) V7 Q5 t. t& c9 Z- N4 o. [- ]
            if (x(i,V + k) < x(j,V + k))
3 k, Q! w" P3 P& u                dom_less = dom_less + 1;8 Q6 a6 _! [0 |) }" v  S
            elseif (x(i,V + k) == x(j,V + k))8 M& _' i0 i, H* A5 ?* _
                dom_equal = dom_equal + 1;5 ~: u: j' i) r2 s4 f0 b* S0 X2 H
            else
. g* ?9 E* a; m/ g# ~' M3 ~! t0 P                dom_more = dom_more + 1;
! I4 e( c9 i& o, U9 r$ t5 _            end. V! y- s5 d$ K+ V
        end+ G' ]6 Q9 t2 z5 K
        if dom_less == 0 && dom_equal ~= M
: J, W" Z/ J- ~* I5 T            individual(i).n = individual(i).n + 1;
- I" M$ J7 E* F+ c        elseif dom_more == 0 && dom_equal ~= M
' f5 L' B" i' F" U3 S" Q            individual(i).p = [individual(i).p j];- M3 x/ X& V! q
        end
/ H+ v. Y$ d5 m8 ~' ]! r    end   ! [1 t% t' o$ k; o& a6 v: E+ G
    if individual(i).n == 0
! X' W4 M# u5 f$ i: o- d/ ?. }        x(i,M + V + 1) = 1;9 @- F* \; |" W6 U, v
        F(front).f = [F(front).f i];
0 Y7 i: }4 |) |5 H    end
  {( v  a! |- s+ b: kend
" Y2 f% p. w. b& N/ F$ C: g9 M) ]5 ]
while ~isempty(F(front).f)0 r4 E9 R( [: R3 |
   Q = [];" b* P4 P2 ^6 \' M- T" W( ^1 v
   for i = 1 : length(F(front).f)% q5 [% e" I" P) s2 _4 X1 M
       if ~isempty(individual(F(front).f(i)).p)- q6 q, X# N* B- t
            for j = 1 : length(individual(F(front).f(i)).p)
5 d4 h9 S6 q9 _: K( Z- L. |                individual(individual(F(front).f(i)).p(j)).n = ...
- n  H1 N# O5 M1 Z! Y3 {# _) ~                    individual(individual(F(front).f(i)).p(j)).n - 1;* q: n* H  T( X, a* G9 C7 E% V
                if individual(individual(F(front).f(i)).p(j)).n == 0) U7 U9 \( V9 l' J
                    x(individual(F(front).f(i)).p(j),M + V + 1) = ...: O4 C3 K# v: R! m- s8 t! Z
                        front + 1;9 P" Q+ f1 S; m) B1 i
                    Q = [Q individual(F(front).f(i)).p(j)];
! U9 a" L% g' d/ t6 G8 f5 N8 G) x- {. H                end
5 b' ?3 V# N8 m. L/ s2 p3 ?" w! d% y            end
2 ^# d3 E$ ?  d  N3 x% c. U3 ?2 T       end
2 [/ y' _1 g& I8 M. A% D$ Z   end: {) O/ ^& K0 s, ^. r  q
   front =  front + 1;
5 \+ i. g. t. }& }- ?6 Z   F(front).f = Q;
5 W$ d5 G7 `, f9 y  Vend9 `! G) ^, ^* f
- o/ y* \$ d' \! f0 m/ A
[temp,index_of_fronts] = sort(x(:,M + V + 1));
3 y: V5 }' G- u: p- b5 @2 n9 yfor i = 1 : length(index_of_fronts)5 h) U) t9 D5 I" b
    sorted_based_on_front(i,:) = x(index_of_fronts(i),:);
7 O  l5 I6 N4 W# z9 Lend0 _1 P3 s! y% ]" G. j+ h
current_index = 0;: o0 u* ?5 c2 c( @
* _3 n# v# f6 P" y8 i; X
%% Crowding distance' N  n! Z' W( w* Z
) g. @) e: V* y3 d' l: ~1 |) |
for front = 1 : (length(F) - 1)
% c3 L" Q6 [! V/ O4 _7 H, J    distance = 0;
- t) u5 D& ~5 k7 E6 v6 I4 o! U. a    y = [];
: c* B& u9 o; G6 r    previous_index = current_index + 1;! J) F( I* ~7 {2 G  }
    for i = 1 : length(F(front).f)' S: W  t; @$ f* u' |
        y(i,:) = sorted_based_on_front(current_index + i,:);
- K: b3 g; N$ F6 }% W% K    end
  s1 o: ^# x8 |& y8 c& B1 ?    current_index = current_index + i;
$ D( C) D" N4 i) A7 j( v5 I, l5 _    sorted_based_on_objective = [];) T( O; W9 H% R; n5 U9 {
    for i = 1 : M
" T: S2 o! {6 R7 ?        [sorted_based_on_objective, index_of_objectives] = ...  P: [, M  W/ z
            sort(y(:,V + i));
3 @3 N) G  }) r( l3 n/ x2 o        sorted_based_on_objective = [];1 a0 ^/ K& J$ X  b. [4 B3 s, J
        for j = 1 : length(index_of_objectives)
( P% p4 z" P' l* o; c- K. D            sorted_based_on_objective(j,:) = y(index_of_objectives(j),:);: w& r- }! R& s: r9 g5 e
        end6 W8 E1 e  \* Z, G
        f_max = ...% \' M% B# q0 x+ Y3 O' [9 y+ n
            sorted_based_on_objective(length(index_of_objectives), V + i);
9 D- x& n' m+ @# R        f_min = sorted_based_on_objective(1, V + i);
1 t1 J! x# b  R# i        y(index_of_objectives(length(index_of_objectives)),M + V + 1 + i)...
+ q  `2 _( _6 ?# }3 z" `  i            = Inf;! n' u/ u9 R) `3 D
        y(index_of_objectives(1),M + V + 1 + i) = Inf;
3 R3 }  T( l, T: Z' S( W/ N         for j = 2 : length(index_of_objectives) - 1
$ s: m+ v5 ^- ]. G- ]6 v6 U            next_obj  = sorted_based_on_objective(j + 1,V + i);
- ^& I$ P' a! x: P" |) x4 B0 b            previous_obj  = sorted_based_on_objective(j - 1,V + i);
9 `: A1 T# a# Y* c$ A            if (f_max - f_min == 0)" X' M) Z  m) E' T5 m. I; E4 T* g% ~
                y(index_of_objectives(j),M + V + 1 + i) = Inf;$ {( R* q2 R4 p. [
            else
* j# O3 F& o. |                y(index_of_objectives(j),M + V + 1 + i) = ...
9 X6 Y$ w. o) G/ O$ b$ x                     (next_obj - previous_obj)/(f_max - f_min);
% l( |- b7 S) F, J+ f            end
# @' W& |! A. c         end
: ?, h& l2 ^5 y+ w9 f6 Y    end
& X. g& S$ S! X9 N2 q) M    distance = [];3 U$ C* O( `/ R$ ]
    distance(:,1) = zeros(length(F(front).f),1);
/ G9 Y8 B* w9 a1 C) E    for i = 1 : M; I  k1 H$ p$ g+ l+ f
        distance(:,1) = distance(:,1) + y(:,M + V + 1 + i);
/ g( n1 B. p2 g* o* ~/ O- r    end
* J" z9 s, t$ i! T9 |2 N    y(:,M + V + 2) = distance;& _* s, x7 }4 o' Q+ h
    y = y(:,1 : M + V + 2);
0 Z9 y' f$ x! m; O    z(previous_index:current_index,:) = y;( O2 T/ x9 ]# G
end
- x1 T2 L: E7 W' @. `9 N# of = z();
& t7 P: n9 S6 ~, |/ H! x
1 B# \" }% L/ E! c' b6 J! d% s$ G. |& d1 m# W9 |3 c. H
④tournament_selection.m
; s$ i  ?3 W( G$ i1 I# b+ [7 \- w/ c" ~. t7 Z% |
function f = tournament_selection(chromosome, pool_size, tour_size). X; v1 e* i0 ?; O5 `% p- f
[pop, variables] = size(chromosome);; z- y( X0 Y+ U
rank = variables - 1;
/ A! O! S' A4 U( `- j( N' L/ `+ P0 qdistance = variables;
5 u8 T# z# t( T# {. G( Bfor i = 1 : pool_size5 T' ?/ l# }9 Q& `9 N3 h7 x! }
    for j = 1 : tour_size
4 B+ E3 }$ N3 T        candidate(j) = round(pop*rand(1));
! I* w7 G  ~2 Q4 l8 Q9 k/ O        if candidate(j) == 0$ Z1 S# I! A0 W" f( h( L
            candidate(j) = 1;) d* v% A' {6 Z3 b" W6 x! y5 S
        end
# y4 _  I% e+ J5 e5 s        if j > 1
4 \( m3 T% k" w) a            while ~isempty(find(candidate(1 : j - 1) == candidate(j))), V& _, h2 \: j4 y3 ~
                candidate(j) = round(pop*rand(1));
0 C+ x- G% b& b  h7 I& A' d                if candidate(j) == 0
  Y$ u( Q' W0 S+ ?' F, h3 f" B' W                    candidate(j) = 1;/ J. B/ a. `) _$ g9 ?; y
                end- B) n5 i7 f2 u( a: w4 ]
            end
, c6 W. s) ^$ S" a4 q: @% H/ J. T. s        end
9 Y" R+ w0 I0 l. a    end
/ G# \# x4 i3 p9 ^, \) s. }2 t: |    for j = 1 : tour_size. W- y1 Z$ r& |: H& T) z' b  m, H- Z
        c_obj_rank(j) = chromosome(candidate(j),rank);
- i9 V: E3 o: T0 Q! u( f        c_obj_distance(j) = chromosome(candidate(j),distance);
) y# C$ b5 ]6 T; {! o. U0 J$ t    end
6 f+ {* H% p2 L    min_candidate = ...- t# U, C, ^5 \# q- v
        find(c_obj_rank == min(c_obj_rank));
5 d9 a+ [( e4 p7 p. a' {) k* {    if length(min_candidate) ~= 1+ m$ V& t; E$ D/ m. W$ F* f
        max_candidate = ...& C0 {& Z& c  K: f  c4 g
        find(c_obj_distance(min_candidate) == max(c_obj_distance(min_candidate)));$ E: \2 f. E+ Z3 m+ r  C; A$ h: D8 h
        if length(max_candidate) ~= 1( ^- e$ C3 h" G" K
            max_candidate = max_candidate(1);
* c# Z4 |" x  A( }6 X8 s3 j, G* E0 O8 S        end. }$ ~! v2 W/ i4 t. |  t- f
        f(i,:) = chromosome(candidate(min_candidate(max_candidate)),:);% r" a- `3 N& y1 Q
    else
% ~1 j! g7 ]5 H7 v; e- b: E        f(i,:) = chromosome(candidate(min_candidate(1)),:);
# P& S) \" k$ x5 J    end
( w1 L/ Y' Z5 b- a, Iend0 ^; [3 [$ L& Y: h' `  }/ q8 X8 E

3 v, M6 ]- Z* q; C+ ^1 }6 L" @/ _( Q  W% B. |
⑤genetic_operator.m
0 r& R  {0 r, g
3 Q2 ]" ?  o1 C# X8 C9 y* Zfunction f  = genetic_operator(parent_chromosome, M, V, mu, mum, l_limit, u_limit)# t: m0 d' [) Q) K' q& i! Y7 s- y
[N,m] = size(parent_chromosome);
8 h  Q+ M1 O8 M# R! s% i- l$ S  B7 v3 z  L* O5 }
clear m9 V( D; Z2 q3 ~' v! i1 |2 G+ H, T
p = 1;
8 ~# Q' L. Q9 ?2 A) [$ [was_crossover = 0;
% q; O$ I: P4 }" C7 g. K$ c4 Hwas_mutation = 0;
9 _6 Z* _' q- N7 S3 `( r( S& N9 C3 ?7 l; T1 w4 b0 |
2 F- M+ |! ~  U3 L" p
for i = 1 : N5 ^  \$ X+ |% H" [9 l
    % With 90 % probability perform crossover
1 ]  J% V3 K# k4 x  {+ w    if rand(1) < 0.90 h/ m6 J0 }5 B6 M: {" |# X3 O
        % Initialize the children to be null vector.2 B8 N, U& E4 F8 a+ M- t
        child_1 = [];3 F: t% U7 {% i! v( t. l
        child_2 = [];
- M1 L$ @; y/ j+ {0 {5 U; n  t2 |        % Select the first parent! C8 X( a8 ^5 q8 T
        parent_1 = round(N*rand(1));+ e" [. f1 q& |
        if parent_1 < 1
- ]1 M0 y' b0 I/ P) q            parent_1 = 1;
) y' M% }( c. a" z! a7 o- f        end( M" I6 B9 v  O. W$ @
        % Select the second parent
' Q7 r9 \/ q# `  W  O# x& d: N        parent_2 = round(N*rand(1));
" q8 e: S0 P8 B6 x        if parent_2 < 1
- r+ Q# n4 @3 z# F: J0 m6 [7 H! S% G) X            parent_2 = 1;
9 @/ J( B) Z8 V4 P        end+ `; _/ u& B! ]4 J6 d& d4 \$ w
        % Make sure both the parents are not the same.
% T: `6 p5 }/ A        while isequal(parent_chromosome(parent_1,:),parent_chromosome(parent_2,:))
0 B, I# F5 W% k. b& R) t            parent_2 = round(N*rand(1));. ?4 M$ w! i% L! i* w
            if parent_2 < 13 w4 r6 |2 A* a7 w, L
                parent_2 = 1;
: M7 b- a8 |* k, f4 q% s( G; x            end! M3 M* o9 g0 x: A
        end" e6 ^8 |" Z. ]+ i
        % Get the chromosome information for each randomnly selected
' H. Q" J# k3 A        % parents
) H0 u9 ^* ]8 |        parent_1 = parent_chromosome(parent_1,:);
- a/ Z0 ^3 `' R8 D5 a$ I6 x7 Q  @8 E        parent_2 = parent_chromosome(parent_2,:);9 u+ G$ V1 d9 i
        % Perform corssover for each decision variable in the chromosome.* X# v7 H% r* B% b
        for j = 1 : V
/ @+ O& X- ]9 J# ]! v( F6 P5 F            % SBX (Simulated Binary Crossover).
) o  m& d7 G* M/ T! O2 g+ q            % For more information about SBX refer the enclosed pdf file.( j, k9 |9 N" ^, q& N
            % Generate a random number! }/ [+ V9 n% F6 n7 K
            u(j) = rand(1);0 y- F6 H- u9 F) S0 U2 r
            if u(j) <= 0.5
& G0 W: J9 W2 e; V; F# T' S                bq(j) = (2*u(j))^(1/(mu+1));1 Z' T7 r$ N$ H0 p  ?& E
            else$ Z9 E4 ~/ c" X+ G7 F6 B3 H) C
                bq(j) = (1/(2*(1 - u(j))))^(1/(mu+1));
4 I2 u% u' L# ~            end
7 J" @+ y* c  }            % Generate the jth element of first child0 b4 x5 A) S; Y3 n5 S
            child_1(j) = ...3 B3 d" O! u5 R3 W% ]1 A- h
                0.5*(((1 + bq(j))*parent_1(j)) + (1 - bq(j))*parent_2(j));+ W' k' G1 y+ y* M! r
            % Generate the jth element of second child+ a3 T2 I+ Q; C" g( j! m1 s
            child_2(j) = ...
) J6 g7 T6 w3 h" ~- z; [6 k' F) N                0.5*(((1 - bq(j))*parent_1(j)) + (1 + bq(j))*parent_2(j));4 n% o; J+ k% h4 ~) a
            % Make sure that the generated element is within the specified
4 n0 R+ P4 J" d" v' o' O            % decision space else set it to the appropriate extrema.
4 z0 b8 {2 A# c: C0 e7 X            if child_1(j) > u_limit(j)$ T  Z; C* I1 X8 a5 P
                child_1(j) = u_limit(j);& w% c. I+ ^$ @$ d1 V3 k7 i
            elseif child_1(j) < l_limit(j)/ X% G3 c. Q" Z( r: F6 R! ^
                child_1(j) = l_limit(j);& b9 N. F) C/ e. P2 h* |+ x
            end$ K- L9 d9 w( ?/ L. {9 m& {. v8 m
            if child_2(j) > u_limit(j)1 s3 k' ^0 u( |2 J
                child_2(j) = u_limit(j);" U3 ~3 M5 S" n3 l1 E
            elseif child_2(j) < l_limit(j)
: |+ A% e# G; i8 z7 N" D3 w                child_2(j) = l_limit(j);
7 n- @! O/ H' N/ `( Q            end
( I- V' G0 b7 Z/ B1 K) l        end& y! z; H4 L8 V0 b
        child_1(:,V + 1: M + V) = evaluate_objective(child_1, M, V);" P$ \3 l& C; S' G# p1 l
        child_2(:,V + 1: M + V) = evaluate_objective(child_2, M, V);  ~. F" S- t! V
        was_crossover = 1;) g' a6 x; Z1 e
        was_mutation = 0;2 s8 y- p- k& Y8 G% x
    % With 10 % probability perform mutation. Mutation is based on
2 i3 M, d2 U$ a( R2 `! I    % polynomial mutation.
7 D1 ^' f8 b1 ~8 r; \1 h" `    else$ o  `  Z$ c% ~
        % Select at random the parent.
1 G5 t4 X4 d5 b3 Q* u: d        parent_3 = round(N*rand(1));
* q$ E5 e# E* c" G        if parent_3 < 1) u% w+ T! m0 z* l6 f
            parent_3 = 1;* ~  n. g, b. K; h7 ^
        end& G% Z3 p( }# i8 v6 C) l- }
        % Get the chromosome information for the randomnly selected parent.1 o$ G) [& j- _
        child_3 = parent_chromosome(parent_3,:);8 u# F& }& _, r% q" n+ p. I$ d' a
        % Perform mutation on eact element of the selected parent.
6 e8 i1 q3 [$ ?+ Z" ~        for j = 1 : V
- K2 ^. X: x) e0 r           r(j) = rand(1);% T$ V2 Q2 `) h# b% I: }
           if r(j) < 0.5
5 B' p9 J  J9 C# r1 c4 r               delta(j) = (2*r(j))^(1/(mum+1)) - 1;
  X6 M8 A" [7 t+ t# ^4 t           else
' k# I! o5 R( f, s' l               delta(j) = 1 - (2*(1 - r(j)))^(1/(mum+1));9 M8 U, o- ^- S) ^
           end, f, Q1 Q: t0 M9 y9 r
           % Generate the corresponding child element.5 Y/ q( B+ \$ u2 S  |
           child_3(j) = child_3(j) + delta(j);3 l) ^( C% w% S  N6 w" ~. g" |
           % Make sure that the generated element is within the decision
7 t) X5 t1 T6 |- W7 ~; B           % space.
3 o* S; T; l6 G' A0 o" \- i           if child_3(j) > u_limit(j)1 ]8 Q$ A& a4 {8 _( H$ n. ~0 M
               child_3(j) = u_limit(j);
2 a7 [; m2 ~0 K- e* e' Q           elseif child_3(j) < l_limit(j)- E  O% o3 V# U) L/ S4 p: T
               child_3(j) = l_limit(j);
7 r  c6 M! T. C3 }# y% k" v% q           end
2 s' _% ?" c3 c/ D( q; C) v        end
. O, \" \; }- n        child_3(:,V + 1: M + V) = evaluate_objective(child_3, M, V);
: u& _  I  J8 g" O0 @- _        % Set the mutation flag* T% L! j+ z4 ]0 Z. @
        was_mutation = 1;
! {' [+ T9 Z7 x. p% D5 V        was_crossover = 0;0 ~1 ]  m/ B& Q0 S* {$ E" }# j
    end0 z6 n& @! G1 D  ~. D6 E, W* _
    if was_crossover8 t3 f) i! l+ D1 X% ^8 D7 S
        child(p,:) = child_1;8 Z: m' X) r( F0 o9 M
        child(p+1,:) = child_2;; a! t! x+ D7 }' v8 z
        was_cossover = 0;
& r* \: e/ C% K        p = p + 2;' ]6 U9 V3 f. k2 U
    elseif was_mutation2 }  q. V" V) V; E
        child(p,:) = child_3(1,1 : M + V);' k/ N1 f0 ]. `# l8 l7 S
        was_mutation = 0;
* g: y# j* _1 x' R4 I9 Y        p = p + 1;
; B. B* F& F# b4 m, M    end
. Q6 t; v1 ~7 q" E. E7 lend" y: U' ~, w4 f' ?
f = child;
) s  @2 V  ^* _2 s( s1 b
; J: \3 S1 A2 v0 s* F$ U' f( w6 |6 ?0 V' s" T" Q, J
⑥replace_chromosome.m
) K; e' s& l. F) r2 M: f: w( ^7 q4 q% O0 J% J) l/ ^
function f  = replace_chromosome(intermediate_chromosome, M, V,pop)0 k* U+ @" h" _

8 g. ^/ G; L" C2 i& i' x( e: Z/ Z; u
[N, m] = size(intermediate_chromosome);$ C8 U+ l& o" F6 H! p

7 T( ?! N" h" K7 W0 k4 O. @% Get the index for the population sort based on the rank
- a% J' U& e. X# Z[temp,index] = sort(intermediate_chromosome(:,M + V + 1));
" |6 Q9 p3 `% e8 O: W; D# [1 r9 D9 \7 d! l1 z6 [- m: Z* G* C) E
clear temp m
" s& R; i- r* }4 j, I7 z# ^  u) a6 A6 f% [
% Now sort the individuals based on the index3 {4 v' g  V7 A  _" O- |
for i = 1 : N- Z: G5 A  O( a# Z  x$ B; u. N% T
    sorted_chromosome(i,:) = intermediate_chromosome(index(i),:);) t3 e. S# r# t- f) ~& c
end
" ]9 D4 F/ j1 F) {2 b. p, E; ^1 i- p# K+ [2 M' _
% Find the maximum rank in the current population
( }2 m6 C2 O+ Xmax_rank = max(intermediate_chromosome(:,M + V + 1));8 H4 Q- B& d/ u! m& D1 ?0 Z9 t

1 H3 x8 Z; m1 K. W( E. s% M' o% Start adding each front based on rank and crowing distance until the
2 v" Q; _4 s6 E' M4 @* d% Z% whole population is filled.
' d$ u' q: h- ~8 x" Uprevious_index = 0;
+ I. e% {# Z9 |1 Q  Lfor i = 1 : max_rank+ u7 T3 |) u6 A5 Z- H; o  s
    % Get the index for current rank i.e the last the last element in the
, ^1 Z$ s6 ^9 r) [    % sorted_chromosome with rank i.
9 r8 d) S& r  Z6 n    current_index = max(find(sorted_chromosome(:,M + V + 1) == i));
1 o/ H$ v* j/ z- d' J    % Check to see if the population is filled if all the individuals with
  C" F1 x% y  G* `. v" E    % rank i is added to the population. # r; j4 i! M9 ?" `& B
    if current_index > pop
3 }2 ]: R+ D7 W        % If so then find the number of individuals with in with current
9 y- u3 l$ R0 N1 j        % rank i.. w' v3 a1 t* K' a+ u
        remaining = pop - previous_index;
" @+ k) O2 s: @* O, o" Y        % Get information about the individuals in the current rank i.7 m0 t2 y4 ~+ {! F
        temp_pop = ..., w  D( ^2 t. I8 j" Q3 g5 e7 @# J
            sorted_chromosome(previous_index + 1 : current_index, :);
8 {/ l: P* `; e# L% ~9 a* J! `        % Sort the individuals with rank i in the descending order based on
, z* r) \7 F: w, q2 l        % the crowding distance.
$ A1 r3 {  B6 H! J# \        [temp_sort,temp_sort_index] = ...
; I# s+ A( w% b- v$ y5 ^            sort(temp_pop(:, M + V + 2),'descend');3 w8 U5 O% d6 L6 V2 Y
        % Start filling individuals into the population in descending order) \2 @$ j* X3 K8 n- @8 J
        % until the population is filled." I0 q$ n$ J+ t" h, r
        for j = 1 : remaining% a3 ~( @& j6 A7 `: o2 R) K' D
            f(previous_index + j,:) = temp_pop(temp_sort_index(j),:);
; }- n9 \" w5 n( O7 M! L+ k        end
7 W* O: t& a& t% H4 E+ I6 I/ a        return;/ D6 {7 a+ n5 d& r+ v9 T2 Z  j& T
    elseif current_index < pop0 S( F( x; H5 h/ ]/ U3 Z
        % Add all the individuals with rank i into the population.! ]1 w3 R# `) D6 O! r" N  q
        f(previous_index + 1 : current_index, :) = ...) O( _% V7 L- k/ C' M
            sorted_chromosome(previous_index + 1 : current_index, :);
% q, i, }0 H, q3 ]' d    else
* v9 f$ p) n* I  Q. `        % Add all the individuals with rank i into the population.
2 n, Y7 _  e/ f. A" T3 r+ |# j        f(previous_index + 1 : current_index, :) = ...
; ~. e: v  Q- Y            sorted_chromosome(previous_index + 1 : current_index, :);1 n$ ~! Z; d) Q) q. P/ Q
        return;! T1 C) L* U3 n* m$ O& u' h
    end8 B3 j) B$ y% \8 ^7 P" a+ M
    % Get the index for the last added individual.
  ]+ O0 |8 l+ Y4 X5 L    previous_index = current_index;
# ]) {0 x) ]) y# p  dend
$ {% [, `2 s% `; s4 S! S" C: w) v. ?# [5 [- J, I. R) @

( O2 `% Y8 ]3 G  Q, \7 P⑦自定义评价函数(我选用的ZDT1函数)
2 x' {. T+ j  h% @+ l2 K+ W& c$ {4 z: ~
function f = evaluate_objective(x, M, V)- s3 I9 d+ u$ j% i
f = [];" \) a; a/ N3 l# m5 P) i8 `
f(1) = x(1);& x" V# Z) c2 {# F
g = 1;
/ N# V2 L/ y: Z3 H4 k  ]/ z7 hsum = 0;8 e5 m% s* d# C# s+ Y8 u
for i = 1:V5 c0 [; F! l: Q- W& Z( D1 s( X- r
    sum = sum + x(i);+ \9 H  s2 B$ n* d0 L- v+ T' f+ d
end
# Q1 H1 ]0 t( e1 fsum = sum + 9*(sum / (V-1));
) O( W# L8 D' I. J( Z* yg = g + sum;' u8 E/ c  c$ o4 x2 u( J8 n
f(2) = g * (1 - sqrt(x(1) / g));- `8 g. v1 o$ R6 m4 S" x. D6 @
end
' O' h$ O- \! O$ Q% M( W6 q+ G& ^$ E% ~

1 ]! H4 Y) l& p$ ^) E' {500个种群运行500代的结果:
- F" \) z2 Y/ l$ m2 p. H
0 r; a" F( Y  \& I! z+ O; U0 u  p& g2 w, |4 N7 l
& W' N& R7 x; [1 J- e

' n) H$ F% }$ K- X7 I5 r$ L; R$ r' V% O" U4 ]7 E* h& R7 \
8 y0 `$ b; ^4 |0 ~/ S! Y

该用户从未签到

2#
发表于 2020-5-20 13:09 | 只看该作者
NSGA2算法MATLAB
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-11-24 03:27 , Processed in 0.187500 second(s), 26 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表