|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
序列 x(n)的奇偶分解的公式为:* u9 I3 I* T- {/ J1 r
8 d; f% Q% ?! T( i# v2 C
8 K9 H$ \$ y: V8 l9 h, J" i f' D
, u3 ]8 m3 b; ^/ k# T* }
! g) x. a+ x2 D% l0 s
. z7 K$ X" }" ~编写一个序列 x(n) 的奇偶分解式 xe(n) 和 xo(n),需要考虑的问题是序列长度,下标的变化。; V6 B& m& A% V3 `. d" B z
! c: w3 ~" D) j! E# R5 S3 S
这里必须做个声明,下面的程序中用到了前几篇博客中的几个函数,这里给贴出来:" C7 p3 n- W/ k" u: e# S, [- N
% ? k" ]8 h0 D7 T0 D0 }% ^信号相加:) o6 p$ ]1 e. F7 C; d. r1 e H
9 [% o# J5 C2 e$ C3 O1 S. wfunction [y,n] = sigadd(x1,n1,x2,n2)1 |: Z* `; A" v! u, U
% implements y(n) = x1(n) + x2(n)( b; ~' _* J" j0 _$ O
% [y,n] = sigadd(x1,n1,x2,n2)3 ]* }1 Q, i# y2 \- A ~* n
%____________________________________
& S& @' ]1 y1 Z' B- x% y = sum sequence over n, which includes n1 and n2) K/ F9 |& G A3 E% b# ]0 W
% x1 = first sequence over n1
% @, y$ `) @: z8 G7 s% x2 = second sequence over n2( n2 can be different from n1); V5 G& P- K' K$ L9 B) R
%
* S/ ^+ k8 [# h: P$ ]+ Wn = min( min(n1), min(n2) ):max( max(n1), max(n2) ); %duration of y(n); I8 w( j) q; O t# A
y1 = zeros(1,length(n)); y2 = y1; %initialization& M/ l) w6 I1 o' r& m* H! N+ f
y1( find( ( n >= min(n1) )&( n <= max(n1) ) == 1 ) ) = x1; %x1 with duration of y1
& f4 L/ g: A; I! _2 Fy2( find( ( n >= min(n2) )&( n <= max(n2) ) == 1 ) ) = x2; %x2 with duration of y2
" m/ q, }* k) Iy = y1 + y2;8 }7 \1 n( m9 t" F
' `; J- g7 O r
7 A' d6 L( X7 A7 G7 s+ K. b信号移位:/ a* c# H9 l; A; P. Y
9 o) T8 H2 Q" b+ E. ?7 q: l7 }
function [y,n] = sigshift(x,m,k)
8 c& T. X6 U W! H%implements y(n) = x(n - k)% r" @- C) H1 w* c* f6 h
%_________________________
; B% Q0 z0 ]* B%[y,n] = sigshift(x,m,k)
9 c, S$ M b$ g$ y%' L# B1 D* ]& D5 _8 X7 s
n = m+k;
( J e7 l5 ]9 y \* ny = x;* ~$ u, R+ D8 P" F
4 z8 \% E. A- a. Y' C
) P5 @1 a6 U( V& a7 Q
单位阶跃序列:" b4 i. T5 K: z6 F, l) ]* v/ ~( l& \
9 e9 `* @- T4 Z y4 S) ~' z
function [x,n]=stepseq(n0,n1,n2);: |, `1 F4 u: a
% generate x(n) = u(n - n0); n1 <= n <= n2) d/ d5 o' w5 \
%_____________________________________________) _+ {6 e- W9 ?/ }" I% M4 e
%[x,n] = stepseq(n0, n1, n2);3 v% t' b- w9 j* m2 g
%& l% E8 R5 |1 w! F1 W
n = [n1:n2];* a5 |# [( D- g e
x = [(n-n0) >= 0];- V( w, U5 N( E* r4 V1 h
; c% A0 I# H' x5 T! U2 e
2 Z0 Z2 i4 y3 O- G( z- D- J! s下面给出函数程序:
" M H& P8 I4 W" d- q1 U7 T8 s) J' u4 N7 M/ }: M+ s
function [xe, xo, m] = evenodd(x, n)* C( c& x: G3 f$ m# I/ t. Y
% Real signal decomposition into even and odd parts- O, _, B% ~1 C
%__________________________________________________
8 e* k/ V4 c! E6 n2 T( C \%[xe, xo, m] = evenodd(x, n)
) C% {; O0 U( S$ K0 {5 j. P9 R%4 j, K+ c- U- r8 t2 {2 U1 X+ c5 s
if any( imag(x) )& ^ ]) n! q$ _3 i3 p& p
error('x is not a real sequence!');/ t# y- m- i9 G* F8 K0 b- t2 S
end5 k0 b$ f# \# f) T
* `; P0 ], {% |" i% Ensure m of xe and xo
8 w: {; A0 X3 k# u# w7 zm = - fliplr(n);1 k9 ^7 r# o+ @" R, b8 d
m1 = min([m,n]);; J. V, E, l; x. i8 N! c9 p
m2 = max([m,n]);1 [2 \3 f8 |9 f
m = m1:m2;% H1 o. \; W m' @; \3 u- f- Y
8 l# @7 f) ?( a. d, x
% Ensure x over m
0 M5 K3 P: x+ u c" U$ c8 Onm = n(1) - m(1);
/ t, B+ @& C- z6 W* t. \3 v9 Wn1 = 1:length(n);: w- I7 B2 M4 ^: f$ |" g, T
x1 = zeros(1,length(m)); % initialization
$ W0 u+ W+ U8 R+ U* F v& bx1(nm + n1) = x;
B7 x; N8 O' e5 @7 O/ J5 x' |( fx = x1; % new x which enlarge index n
, N2 j* s8 K; M: j
: w1 q- P* \/ \ ?/ m% xe and xo8 D- T5 [, z. ?5 y: t$ e8 K3 D S
xe = 0.5*(x + fliplr(x));- |; H7 h% M" b# R9 K8 e3 A
xo = 0.5*(x - fliplr(x));/ i- O" f& L7 l4 g/ g* @! C. M2 g
9 r# j8 S0 F# l+ U0 I) y
% d3 L# e' D' k0 g8 F序列和及其位置分别装入 x 和 n 数组。首先确认是否已知序列是实序列并在m数组中确定偶部和奇部分量的位置,最后将所得奇偶分量存入xe和xo数组中。
+ h/ T+ P8 y( V
. l1 V8 B7 ^# N& i+ Z下面以一个实例来验证上述函数:
/ c. o3 s& \+ k" _' x4 }/ ]0 V6 M* w: U' k' ]. r, I) B
: l& F0 ?2 w; ~5 \9 |, t
+ p) [ X0 W; j5 [% d将x(n)分解为奇偶分量。; F N& Q# J6 [0 p; V9 B, p
4 h4 g: B8 O/ Y Jclc
4 M- q- h! Q5 }; ?9 R: Uclear( L, V1 r9 X. s/ L, {- S. _
close all) y! z1 Q" I* q* X
- o u4 }+ a/ Z* r1 \7 X
n = 0:10;
2 T: J0 L0 j% ]# I- ax = stepseq(0,0,10) - stepseq(10,0,10);
) B6 l8 F1 j) L h3 b[xe, xo, m] = evenodd(x,n);
) Z! K" a8 A: W% G. m% t- j0 Q: r. m4 ]* C. _% [
subplot(2,2,1);
& H0 z% q1 ~ u( J2 H& `stem(n,x,'filled');4 l; m. H6 c) C
title('Rectangular pulse');
4 [9 K4 d( y6 r' A7 Q; @xlabel('n');ylabel('x(n)'); ' @, j: c% Y8 r* a/ O
axis([-10,10,0,1.2]);; t* T. K( B/ c3 Y3 V
; }1 k" z/ P/ E& ]" A% s: Lsubplot(2,2,2);
& j/ ?5 P3 e3 T3 P' Z+ X5 Cstem(m,xe,'filled');4 I: F: F) T$ k
title('Even part');( d$ d0 ^+ k; c0 _7 b2 o
xlabel('n');ylabel('xe(n)');9 b" Z$ N7 U/ K+ `. j
axis([-10,10,0,1.2]);; {6 k9 h1 k3 j
+ Q6 S$ p, d/ J y. Z: |, y% qsubplot(2,2,4);
4 j5 a8 x; |4 b* Mstem(m,xo,'filled');$ ~) X( C6 n1 m+ b
title('Odd part');- J5 F3 y2 C9 {- \4 S- Z
xlabel('n');ylabel('xo(n)');7 Z* a/ [$ [' M" \
axis([-10,10,-0.6,0.6]);8 o5 \2 a# k$ B" n6 m2 D2 D
. i2 c4 r0 G6 m+ v) F3 j' L- T
5 H" z" E; m/ Z: q- ? L& j6 m/ k/ M' R9 j/ s
事实上,这篇博文到这里已经结束了,那我还想看看序列x(n)= u(n) - u(n-10)的合成过程:0 ?5 G" A( g6 G" R8 d
7 g; _; i8 d; Qclc
1 y c$ U7 z3 O9 sclear
1 Z E. r1 ]6 L/ P2 P0 vclose all
+ ~4 }: m# m" C" t/ e7 A% n) \
7 F8 b$ y1 w1 u$ E+ t[u1,n1] = stepseq(0,0,10);
/ D" g9 Q, Q( ~7 e/ O0 A9 e$ s: D0 `4 x
subplot(3,1,1)8 i9 v9 A' `; l! s
stem(n1,u1,'filled');
+ T& _7 Y& h; R7 ]6 ititle('u(n)');
# O" i: C: g3 V: y, V! D3 Jylabel('u(n)');xlabel('n');: h0 u0 W; l* J
axis([-10,10,0,1.2]);' L9 h) ?; O* c! \% E$ V5 @8 T
4 \& Y8 B) H$ @0 X4 Y7 Y[u2,n2] = sigshift(u1,n1,10);( d8 ]* m4 }9 B ?* [) j
subplot(3,1,2)2 [ S2 }9 _/ s6 c5 M4 p8 J# Z, F
stem(n2,u2,'filled');5 g8 G3 q3 c: C5 |4 i
title('u(n-10)')
, _) t3 m O; s H: hxlabel('n');ylabel('u(n - 10)');+ Z% r% q, Z+ {2 p( _, S- y
axis([0,20,0,1.2]);
; V" L; q8 P# t' W5 Y' d4 ~
' z2 j! _3 d( e[x,n] = sigadd(u1,n1,-u2,n2);1 b! P# \( C1 q: j( H
' T5 q/ `: ^) U
subplot(3,1,3)5 `0 r" T2 Y6 j: W" C( R( k
stem(n,x,'filled');
$ ?" n m; G& k' q1 t2 mtitle('Rectangular sequence');
- Y0 c3 L9 t6 txlabel('n');ylabel('x(n)= u(n) - u(n -10)');
* W, I1 V- _* Y$ Z( P/ c/ ~axis([-10,10,0,1.2]);! ~1 p9 A! w. s8 p& s# J6 v/ W7 [- y
5 D* \( k2 c& Y" m- P5 T* e
N% L' E1 F3 `% @
+ {& N3 S$ J) ?( t, P# `4 Q8 d
, `; \( J) L; Y& J) U |
|