|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
6 V8 l- I5 W& v. b3 }# L" tnorm
1 F3 Q* [- t( y; v1 b8 u' zVector and matrix norms. U& n* N$ W% |# ^2 A7 h
" k$ |! K1 W! r# J! B
Syntax$ U; l4 ]9 U, O; p8 V! J. h/ h- S
2 U" F& }' U' b A
n = norm(v)/ H& R Y! N, N& x |+ s+ x
/ }0 P9 Z0 g- h' j
n = norm(v,p)- U" x% S; K. U9 o0 _) @$ H
' ]2 [+ `* y' T* c, bn = norm(X)! ^+ v, V$ Q3 m9 G z8 F9 c$ s/ w
( }, h& }1 ]- \9 R6 x/ z8 ?4 V2 ~
n = norm(X,p): y% H8 X3 _4 F' \% V' E+ \# @$ E
$ T: ]) N& N: S/ v7 z2 q
n = norm(X,'fro')
9 r# z a4 _9 M% U" {- N/ W# N3 y
Description
/ I3 }" o2 s+ M
: Y8 Z6 I' o$ U% C0 z8 Zn = norm(v)返回向量v的欧几里德范数。该范数也称为2范数,向量幅度或欧几里德长度。
* p, G3 t1 Q/ N3 c4 X5 i% T
/ q7 K: T( T7 G& [n = norm(v,p)返回广义向量p范数。
: @# g4 T6 F; y' u8 {2 s2 B) O2 B/ V, K3 G
n = norm(X)返回矩阵X的2范数或最大奇异值,其近似为max(svd(X))。2 j/ E% A, [, u, G7 Z
" \% A# P* R3 j% b4 Q7 nn = norm(X,p)返回矩阵X的p范数,其中p为1,2或Inf:
3 k" |6 Q: i p+ a4 n+ j& f6 h/ x# Z
! R' }9 D7 r2 u- B0 s- 如果p = 1,则n是矩阵的最大绝对列和。
- 如果p = 2,则n近似为max(svd(X))。 这相当于norm(X)。
- 如果p = Inf,那么n是矩阵的最大绝对行和。1 t6 r2 q3 s3 P) L: y
) L9 i' \* H/ G% b) B j
n = norm(X,'fro')返回矩阵X的Frobenius范数。# g1 j" T' c6 e2 \# Y& o( {7 m
- c0 n7 }) W$ M( ^0 V' y! c; }7 G有关范数的基础知识,见上篇文章:MATLAB必备的范数的基础知识
& I: e" ]% E% U7 s) k
q, C" q9 X4 L* C$ i5 D: u下面举例说明:
9 a% D( {6 B2 [% h- C& i: Y1 d* Y
Vector Magnitude(向量幅度)
/ ]5 Y7 K$ e+ E( p9 h) r6 m; F( `4 M% S. ]
- %Create a vector and calculate the magnitude.
- v = [1 -2 3];
- n = norm(v)
- % n = 3.74171 A5 R' ?: J% T
: @( m! E" Q0 A+ m+ L, _+ ?' @- t7 S) H* x: V' v4 V
1-Norm of Vector% D: F! S5 p2 ~1 N
5 s& m( k+ g2 }. f$ Q
- clc
- clear
- close all
- % Calculate the 1-norm of a vector, which is the sum of the element magnitudes.
- X = [-2 3 -1];
- n = norm(X,1)
- % n = 6+ J2 M. B# j3 f! g6 `$ F3 W6 ~) U2 V
3 B3 ^8 }# D5 T/ f- I8 `
Euclidean Distance Between Two Points
6 s; O$ e- p7 p1 [1 R7 F, I# Y# v% p1 {2 F& [% N
- clc
- clear
- close all
- % Calculate the distance between two points as the norm of the difference between the vector elements.
- %
- % Create two vectors representing the (x,y) coordinates for two points on the Euclidean plane.
- a = [0 3];
- b = [-2 1];
- % Use norm to calculate the distance between the points.
- d = norm(b-a)
9 W! i) H D( d* ?: J
& K% [. p6 f+ I) j0 Q2 a- g7 D2 td =! T; h6 Q' S* U( U3 A1 _% z
, V. q+ k# H4 B3 \, M. k& z$ e
2.8284
* ^8 H& U0 }& O, O' u2 ^. K% C' k: K3 o$ o( H& L
几何上,两点之间的距离:
3 c7 h4 x) `5 N. j4 D" i- J
2 z* w! V: |9 l& V9 c
/ D6 i' E D2 D' S
/ y( k" J1 p0 P: y: `: B% j; |9 u6 r* Z4 }3 F
2-Norm of Matrix
* s+ O+ {: K* o9 }
, C$ J( @* r- @( o( F5 [- clc
- clear
- close all
- % Calculate the 2-norm of a matrix, which is the largest singular value.
- X = [2 0 1;-1 1 0;-3 3 0];
- n = norm(X)
- % n = 4.7234
, h$ E: U% M( o- h5 u: j 8 C# V7 g+ }' I2 C- l( H
Frobenius Norm of Sparse Matrix" Y3 p/ s( B1 N4 l. ^) s) H( c$ ~
) Q" d2 x% e& S7 ]; J; E( L- a' k+ `+ A7 c" b4 S
- clc
- clear
- close all
- % 使用'fro'计算稀疏矩阵的Frobenius范数,该范数计算列向量的2范数S(:)。
- S = sparse(1:25,1:25,1);
- n = norm(S,'fro')
- % n = 5
0 T' e" {# Q! F' T/ v& t
, F( T, H- ?* U7 y2 e- m7 a: ^$ E3 m6 W: J' U- |8 u [
# P/ q4 l" }7 V/ ^' Z/ b3 O! z |
|