EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
2 {% [) j& z- ]( T: B4 t" g传输线 巴伦
5 R" X0 q% D, ?8 n. C% I; c ( t! G! m, P+ V! p( l
3 k9 N1 u# t5 m1.基本原型:
# u: G7 z* A& d* c; t! c- h% V% v2 p* c: }3 n/ x" J; O# h. i
' |0 g& h- W+ r- D" r2 z; Q
2.最佳传输条件:
6 H/ M8 `2 Z7 w& g M/ u4 s2 z' v0 q0 d; o5 `" I- J7 g7 q8 T( ~+ A
# t( n, `0 W; F& u
2.2 传输线长度l应尽可能地小,工程设计中一般取<λ/8
! Y9 H& m. g' F H# z0 v2 p' f5 R2 S 3 I, t5 K4 q% q8 j p: C
3.相关公式/ h( F. _0 d* N) W
3.1传输损耗公式:/ F! p" }" X( s% B, d" h' A+ V
7 o% y$ |7 n1 z9 P& c$ U% |/ x7 w" y. T& v: ]* } I3 M ~
' P8 m. U& F% r* [( M: Z6 J- D1 B3.2反射损耗公式为: ) p. s+ y9 F, v" p) X+ [
4 N! Z: A9 | i: t a
7 K7 M4 z$ B8 x& c9 j$ W' h. ?; l式中。Rg为源阻抗。L0为空芯绕组电感,μ’为磁导率实部, μ”为磁导率虚部。磁损耗角正切tanδm=μ”/μ’。选择μ’高、tanδm大的材料能够 同时满足传输损耗、反射损耗的指标要求。 + E) x6 `' l% H
) o* G! C8 } z \
3.3磁导率
/ ^& n8 K. F- s6 Z2 i. {铁氧体磁芯磁导率随频率变化的影响: % [- y8 e2 C* i/ } B4 |
磁导率随频率 变化的公式为
( W8 k( V0 P& n2 |( J! f3 a) B- g' z
% _, P' r$ R/ e6 f1 p
. ^* w; E. {% a0 p5 O$ K$ N- u式中,S为斯诺克常数,,fr为截止频率。 ) _( q- ]" b' y) W
+ f% R- j% Q0 w6 q/ G/ o% ^" P
将上式代人传输损耗公式进行分析得知应选择截止频率低、斯诺克常数高的磁芯材料。 ; z% b9 ~5 a( r
1 @" l$ o U8 O* ?7 n综上所述,可以得出磁芯材料的选取原则是要求低频初始磁导率μ’高、截止频率fr低、斯诺克常数S 高、损耗大tanδm的材料。
# W! i/ Q0 W5 z/ I/ D& {
& z& F( S3 m6 z* W ' l! f& @2 E9 P' d: |" W0 D
6 p, K [6 L |7 S4 q. C
4.ADS 中低端巴伦模型
+ j0 S: O4 N7 G 8 |* a& Z/ Q4 `
BALUN1 (Balanced-to-Unbalanced Transformer (Ferrite Core))
3 g4 T' t+ ?. N/ j9 eSymbol 6 m1 B0 I4 S8 S, I& v8 r9 d1 E
6 }$ i% v( D. r+ `" \$ F3 P
Range of Usage
c6 F" D. H* z" |( iZ > 0, Len > 0, AL > 0
: E3 T: E! S! k# N0 HK ≥ 1
6 C# [, u1 Q3 C) h8 vA ≥ 0
, O* q% a- h+ P% M2 u( f; xF ≥ 0. q2 e% X0 }% C# g K& L
N ≥ 1
, g. q8 ?( B) {5 Y6 r7 ZParameters
! d/ E+ I6 c" |: f7 c6 x0 M| Name | Description | Units | Default | | Z | Characteristic impedance of transmission line | Ohm | 50.0 | | Len | Physical length of transmission line | mil | 12.0 | | K | Effective dielectric constant(有效介电常数) | None | 2.0 | | A | Attenuation (per unit length) of transmission line | dB/meter | 0.0 | | F | Frequency for scaling attenuation | GHz | 1.0 | | N | Number of turns | None | 5.0 | | AL | Inductance index(电感指数) | nH | 960.0 | | TanD | Dielectric loss tangent (介质损耗角正切) | None | 0 | | Mur | Relative permeability (相对磁导率) | None | 1 | | TanM | Magnetic loss tangent(磁损耗正切) | None | 0 | | Sigma | Dielectric conductivity (介电导电率) | None | 0 | | Temp | Physical temperature | °C | None | 7 I6 o2 N- i0 R3 B( h
· This component is a length of transmission line(specified by Z, Len, K, A and F) coiled around a ferrite core. 8 }9 F% V) V |* I% @
Choking inductance Lc accountsfor low-frequency roll-off and is given by
* |' G. D% B+ \Lc = N2 × AL
& I5 _, d7 y; s. oA(f) = A (for F = 0)) v! p# b- _$ ~+ m2 Z7 T
A(f) = A(F) × file:///C:/Users/wanghai/AppData/Local/Temp/msohtmlclip1/01/clip_image013.png4 N/ z* M3 q. A
(for F ≠ 0)! M) n& C$ m+ S6 e
where
; u- F9 ^' V4 k+ o6 |/ H1 pf = simulation frequency
6 {7 F1 f* U# LF = reference frequency for attenuation
9 Y _9 H* x3 ]For time-domain analysis, an impulseresponse obtained from the frequency-domain analytical model is used. Thiscomponent has no default artwork associated with it.
. E( F7 R5 b& x# R/ m( s. J· The "Temp" parameter is only used in noisecalculations.
) u3 j- W0 P4 ~ |0 K) d5 z3 @' Z· For noise to be generated, the transmission line must belossy (loss generates thermal noise).
# Z+ K( I* ^- Q- d & F0 f8 O9 Y! M# W
1 C/ a2 Y( [4 K7 W, M
5.小节:( b& y5 l+ F6 t$ F8 o
调节ADS 中的参数可以仿真出巴伦对应的传输损耗;
$ n, {" A" b7 f& r h介电常数环节需要进一步讨论;.
0 C: o8 o# E8 R& `' K# A 2 m3 L# C$ n- A1 F, l
2 S3 s& |% J( }+ x* w* @ |