|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
Table of Contents& E$ n) q b: a3 J6 H
1 Preface, M# ^1 x0 \3 H5 t8 I# Q! g
1.1 Preface to Matrix Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
3 I: u) i1 A9 S/ ~9 e 2 Matrix Methods for Electrical Systems. B% {& n; B4 I# h
2.1 Nerve Fibers and the Strang Quartet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5* A7 F9 Z8 U K: G* G
2.2 CAAM 335 Chapter 1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
/ |5 Z7 K4 C- j; D 3 Matrix Methods for Mechanical Systems
+ O& t5 ]" H. @0 b2 o 3.1 A Uniaxial Truss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17" @% R: k. J. }9 _: m' V
3.2 A Small Planar Truss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
- V b8 v) g& |1 g! X+ e 3.3 The General Planar Truss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 @: f- T5 x! [ `4 [- b9 h. K
3.4 CAAM 335 Chapter 2 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28, E* Z/ t2 n T
4 The Fundamental Subspaces
8 M8 p, ~" ^' b( h$ b 4.1 Column Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31% d4 E5 R& B7 c" D
4.2 Null Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32* q( A7 w% a9 U3 L# }9 G& f
4.3 The Null and Column Spaces: An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5 R$ p$ s4 T0 C+ g9 z5 u N) H 4.4 Left Null Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
$ h- H$ {% Q8 J( k! _3 {' C 4.5 Row Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395 d! n5 E' K, w/ P3 q: d! {/ e8 a
4.6 Exercises: Columns and Null Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
& l+ E1 H8 v5 \7 Y+ K 4.7 Appendices/Supplements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40+ R3 Q* h0 s. {- |2 t$ n1 p* {. b
5 Least Squares- s- D2 v3 x8 v$ u' ? f
5.1 Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
+ J( t7 C# ?1 c0 W: ~! A* ] 6 Matrix Methods for Dynamical Systems4 ?0 m1 g; k: s9 e0 e8 E
6.1 Nerve Fibers and the Dynamic Strang Quartet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
" }% U' k6 c+ {4 b! G0 u# R 6.2 The Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56& C5 g9 Z+ z! u" x3 l! P
6.3 The Inverse Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58! k" d, K* _- T3 T0 f- V" z6 _3 [
6.4 The Backward-Euler Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59) z5 F% r ^0 v+ e0 B! j
6.5 Exercises: Matrix Methods for Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
% y7 F. x2 v) l% Y0 J9 i8 e" v$ M 6.6 Supplemental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61* N3 y3 Z% P5 J, r a
7 Complex Analysis 1! D# k6 _% `) d! \- k% t* Y
7.1 Complex Numbers, Vectors and Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6 S2 Z' Y/ _% _* q( m4 q 7.2 Complex Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 m6 y& A1 D3 [* ^3 X
7.3 Complex Dierentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
* J# F! v" Y% u( E# F 7.4 Exercises: Complex Numbers, Vectors, and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
" |; Q" \9 e4 \1 I2 {1 F Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 832 t X0 ~) ]1 \
8 Complex Analysis 2
- C/ W* Z; p% V8 E1 S 8.1 Cauchy's Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4 v) O# ~* d6 U3 p 8.2 Cauchy's Integral Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885 L# Y3 a5 a4 l/ R
8.3 The Inverse Laplace Transform: Complex Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92: ^6 _$ O1 p; y) u# b
8.4 Exercises: Complex Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
& ]4 q9 m1 T# k5 y6 n& O! ^ 9 The Eigenvalue Problem9 B+ ~9 ?' p' Z- m! x
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
! n% e6 p, |9 J1 C2 N0 m 9.2 The Resolvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
. N' g2 P4 e c 9.3 The Partial Fraction Expansion of the Resolvent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97! s$ `2 a& ^" n3 O2 k [$ \" \
9.4 The Spectral Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
2 V i$ f4 U4 P/ d( U8 V, b iv
; T/ A( V' ?1 O2 G* j- \ 9.5 The Eigenvalue Problem: Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
; e/ |- @3 i/ F7 w( q7 P$ A 9.6 The Eigenvalue Problem: Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1027 t1 x0 \* ~* l
10 The Symmetric Eigenvalue Problem
$ D3 \! F4 I+ M7 T3 S. k 10.1 The Spectral Representation of a Symmetric Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103! n) p/ p+ s7 Y( e1 f
10.2 Gram-Schmidt Orthogonalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1078 Q$ o' B) i! E9 ~- g3 @0 A" D
10.3 The Diagonalization of a Symmetric Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
, }6 s9 I- f/ u6 J+ y3 Y4 E8 w/ u 11 The Matrix Exponential
: T1 d! t8 v& t9 ~ 11.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4 s" Z/ @4 \$ e7 \: C9 P 11.2 The Matrix Exponential as a Limit of Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
) ?! S" K6 I' M8 c+ g( C 11.3 The Matrix Exponential as a Sum of Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4 N. D! i4 m- l 11.4 The Matrix Exponential via the Laplace Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
4 _, u1 T$ w; e* x" d. J 11.5 The Matrix Exponential via Eigenvalues and Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
% M7 ]+ A, u& ^ 11.6 The Mass-Spring-Damper System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7 T6 X) [/ u/ S0 W8 s2 L 12 Singular Value Decomposition8 ?! {% N" M2 I+ \. |6 ~: F. o
12.1 The Singular Value Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125# X7 M' L) v/ Q
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
! e5 p) b. P/ z Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
( U1 n0 W! O8 m' c* E2 K Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4 c. d+ P: D* d0 O7 l Attributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139% Y" ?" M" k2 V
|
|