|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
7 ]4 L/ F4 \* Y' C, l$ ~6 y8 U& _链表是C语言编程中常用的数据结构,比如我们要建一个整数链表,一般可能这么定义:, `* r* c/ o9 N( O* Z; o# |
3 u6 c8 P4 U' }5 g' }+ y
- struct int_node {
- int val;
- struct int_node *next;
- };
% {8 f8 b$ i9 I 9 q6 t0 e- o. d
6 |4 O/ w) f7 a为了实现链表的插入、删除、遍历等功能,另外要再实现一系列函数,比如:( t, g: {# x5 z, n% y
% ?' y/ u. y1 g, e# N) `& h- void insert_node(struct int_node **head, int val);
- void delete_node(struct int_node *head, struct int_node *current);
- void access_node(struct int_node *head)
- {
- struct int_node *node;
- for (node = head; node != NULL; node = node->next) {
- // do something here
- }
- }
" j2 a- {* Y2 j0 j; e+ Y' ~. g& w
+ x P- P1 O" C$ y( T' y" C0 |5 G, X& H
如果我们的代码里只有这么一个数据结构的话,这样做当然没有问题,但是当代码的规模足够大,需要管理很多种链表,难道需要为每一种链表都要实现一套插入、删除、遍历等功能函数吗?+ i5 E0 I1 _; T& l
0 W( e( n5 H p* |! X$ C, g7 f熟悉C++的同学可能会说,我们可以用标准模板库啊,但是,我们这里谈的是C,在C语言里有没有比较好的方法呢?
$ t" @; b7 j! o% L; M
' ]8 W8 f0 g3 _6 X/ qMr.Dave在他的博客里介绍了自己的实现,这个实现是个很好的方案,各位不妨可以参考一下。在本文中,我们把目光投向当今开源界最大的C项目--Linux Kernel,看看Linux内核如何解决这个问题。* v! K& ~! i; \: i8 u* o2 Y* l
S/ H* q& k, [. f
Linux内核中一般使用双向链表,声明为struct list_head,这个结构体是在include/linux/types.h中定义的,链表的访问是以宏或者内联函数的形式在include/linux/list.h中定义。
* w% p$ W. V6 l
# k1 y* a/ S* u0 E% C6 C/ r- struct list_head {
- struct list_head *next, *prev;
- };# D8 i/ M5 ]8 s1 N/ R
$ `0 a z0 ?+ R4 I( i& g6 `, g! y% m# q
$ T0 Y2 k3 }# a# G- q( O& k( ]9 D
Linux内核为链表提供了一致的访问接口。1 h" ~) ]* p& G. u! U
4 M( ^0 D$ X8 S- e5 A3 u/ u- void INIT_LIST_HEAD(struct list_head *list);
- void list_add(struct list_head *new, struct list_head *head);
- void list_add_tail(struct list_head *new, struct list_head *head);
- void list_del(struct list_head *entry);
- int list_empty(const struct list_head *head);7 r: z* U! ?: X6 [$ `
: T" U' O2 V! E0 X& x: u
. A. [3 Q) J% l& a以上只是从Linux内核里摘选的几个常用接口,更多的定义请参考Linux内核源代码。
$ h& }- s5 ], \* A: Z0 Y3 T& Y, G
9 n# z+ F. N; }9 q _我们先通过一个简单的实作来对Linux内核如何处理链表建立一个感性的认识。+ `( x9 ^" X( s
! t; e2 J. ^8 A7 |& \2 X) P4 Q- #include <stdio.h>
- #include "list.h"
- struct int_node {
- int val;
- struct list_head list;
- };
- int main()
- {
- struct list_head head, *plist;
- struct int_node a, b;
- a.val = 2;
- b.val = 3;
- INIT_LIST_HEAD(&head);
- list_add(&a.list, &head);
- list_add(&b.list, &head);
- list_for_each(plist, &head) {
- struct int_node *node = list_entry(plist, struct int_node, list);
- printf("val = %d\n", node->val);
- }
- return 0;
- }( _- `5 V* t# s( ?: H7 q
. z/ b. P1 {% r4 u! ~( ~
3 w+ u7 Y# C# u% ]( f! J
看完这个实作,是不是觉得在C代码里管理一个链表也很简单呢?
, n( T/ {( Y* a2 d
7 i0 K, j8 K Y9 ?' l代码中包含的头文件list.h是我从Linux内核里抽取出来并做了一点修改的链表处理代码,现附在这里给大家参考,使用的时候只要把这个头文件包含到自己的工程里即可。4 t" V: y% J- j9 R0 z, U7 \0 y4 e
- J+ u5 ^( W6 _3 f/ V, d3 ^
- #ifndef __C_LIST_H
- #define __C_LIST_H
- typedef unsigned char u8;
- typedef unsigned short u16;
- typedef unsigned int u32;
- typedef unsigned long size_t;
- #define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
- /**
- * container_of - cast a member of a structure out to the containing structure
- * @ptr: the pointer to the member.
- * @type: the type of the container struct this is embedded in.
- * @member: the name of the member within the struct.
- *
- */
- #define container_of(ptr, type, member) (type *)((char *)ptr -offsetof(type,member))
- /*
- * These are non-NULL pointers that will result in page faults
- * under normal circumstances, used to verify that nobody uses
- * non-initialized list entries.
- */
- #define LIST_POISON1 ((void *) 0x00100100)
- #define LIST_POISON2 ((void *) 0x00200200)
- struct list_head {
- struct list_head *next, *prev;
- };
- /**
- * list_entry - get the struct for this entry
- * @ptr: the &struct list_head pointer.
- * @type: the type of the struct this is embedded in.
- * @member: the name of the list_struct within the struct.
- */
- #define list_entry(ptr, type, member) \
- container_of(ptr, type, member)
- #define LIST_HEAD_INIT(name) { &(name), &(name) }
- #define LIST_HEAD(name) \
- struct list_head name = LIST_HEAD_INIT(name)
- static inline void INIT_LIST_HEAD(struct list_head *list)
- {
- list->next = list;
- list->prev = list;
- }
- /**
- * list_for_each - iterate over a list
- * @pos: the &struct list_head to use as a loop counter.
- * @head: the head for your list.
- */
- #define list_for_each(pos, head) \
- for (pos = (head)->next; pos != (head); pos = pos->next)
- /**
- * list_for_each_r - iterate over a list reversely
- * @pos: the &struct list_head to use as a loop counter.
- * @head: the head for your list.
- */
- #define list_for_each_r(pos, head) \
- for (pos = (head)->prev; pos != (head); pos = pos->prev)
- /*
- * Insert a new entry between two known consecutive entries.
- *
- * This is only for internal list manipulation where we know
- * the prev/next entries already!
- */
- static inline void __list_add(struct list_head *new,
- struct list_head *prev,
- struct list_head *next)
- {
- next->prev = new;
- new->next = next;
- new->prev = prev;
- prev->next = new;
- }
- /**
- * list_add - add a new entry
- * @new: new entry to be added
- * @head: list head to add it after
- *
- * Insert a new entry after the specified head.
- * This is good for implementing stacks.
- */
- static inline void list_add(struct list_head *new, struct list_head *head)
- {
- __list_add(new, head, head->next);
- }
- /**
- * list_add_tail - add a new entry
- * @new: new entry to be added
- * @head: list head to add it before
- *
- * Insert a new entry before the specified head.
- * This is useful for implementing queues.
- */
- static inline void list_add_tail(struct list_head *new, struct list_head *head)
- {
- __list_add(new, head->prev, head);
- }
- /*
- * Delete a list entry by making the prev/next entries
- * point to each other.
- *
- * This is only for internal list manipulation where we know
- * the prev/next entries already!
- */
- static inline void __list_del(struct list_head * prev, struct list_head * next)
- {
- next->prev = prev;
- prev->next = next;
- }
- /**
- * list_del - deletes entry from list.
- * @entry: the element to delete from the list.
- * Note: list_empty on entry does not return true after this, the entry is
- * in an undefined state.
- */
- static inline void list_del(struct list_head *entry)
- {
- __list_del(entry->prev, entry->next);
- entry->next = LIST_POISON1;
- entry->prev = LIST_POISON2;
- }
- /**
- * list_empty - tests whether a list is empty
- * @head: the list to test.
- */
- static inline int list_empty(const struct list_head *head)
- {
- return head->next == head;
- }
- static inline void __list_splice(struct list_head *list,
- struct list_head *head)
- {
- struct list_head *first = list->next;
- struct list_head *last = list->prev;
- struct list_head *at = head->next;
- first->prev = head;
- head->next = first;
- last->next = at;
- at->prev = last;
- }
- /**
- * list_splice - join two lists
- * @list: the new list to add.
- * @head: the place to add it in the first list.
- */
- static inline void list_splice(struct list_head *list, struct list_head *head)
- {
- if (!list_empty(list))
- __list_splice(list, head);
- }
- #endif // __C_LIST_H
/ g6 G3 e+ ^) h
f% i$ O0 O2 K! _ k
! D% v1 M: ?. [( c+ alist_head通常是嵌在数据结构内使用,在上文的实作中我们还是以整数链表为例,int_node的定义如下:
( M( q, t& I2 L/ P! j) D9 }) Y0 T: R4 l8 T# |7 X- H8 ]3 S# C
- struct int_node {
- int val;
- struct list_head list;
- };
: z! o1 x7 X' Z* r1 u : R T2 D& m5 ~! N- p! e( i
8 Z$ x" I G% ]1 p2 `# \使用list_head组织的链表的结构如下图所示:3 @1 Y' v' e. ]" d
8 S9 Y+ R( |: V/ r
% Z+ p, N8 e& _- b+ _ }& f( c. }
0 B" J( w( K9 i1 {
+ |5 Q% h* A: [3 k$ m- N: d* y4 l- h遍历链表是用宏list_for_each来完成。
6 W0 \4 [* _/ G( _3 M. w4 x4 \- J$ `+ ^
- #define list_for_each(pos, head) \
- for (pos = (head)->next; prefetch(pos->next), pos != (head); \
- pos = pos->next)7 u. N% A: `( ]
( C0 |, Y* ]2 S# I5 s) O8 A2 h4 l: C3 _, G# C
在这里,pos和head均是struct list_head。在遍历的过程中如果需要访问节点,可以用list_entry来取得这个节点的基址。$ s& _, V0 T" s6 S' _
/ z) H8 T, H( k
- #define list_entry(ptr, type, member) \
- container_of(ptr, type, member)9 @) ?' V8 E2 o; k* z
2 \9 ]- q/ L/ u1 b& l
& d" }0 z& f$ U
我们来看看container_of是如何实现的。如下图所示,我们已经知道TYPE结构中MEMBER的地址,如果要得到这个结构体的地址,只需要知道MEMBER在结构体中的偏移量就可以了。如何得到这个偏移量地址呢?这里用到C语言的一个小技巧,我们不妨把结构体投影到地址为0的地方,那么成员的绝对地址就是偏移量。得到偏移量之后,再根据ptr指针指向的地址,就可以很容易的计算出结构体的地址。, ?- \. S2 E! ?% s z2 l
: t2 [2 y1 e! h, b: @
6 j1 d% `2 u, X3 H- @- u$ m% Q) u+ }9 D# Q! i% R. V7 _9 d
list_entry就是通过上面的方法从ptr指针得到我们需要的type结构体。* Y) V% l" t$ \2 X4 k; O" o
0 h& p8 Z6 D% }! C9 @/ X
Linux内核代码博大精深,陈莉君老师曾把它形容为“覆压三百余里,隔离天日”(摘自《阿房宫赋》),可见其内容之丰富、结构之庞杂。内核里有着众多重要的数据结构,具有相关性的数据结构之间很多都是用本文介绍的链表组织在一起,看来list_head结构虽小,作用可真不小。' D: v, e/ J+ A: U; T
8 ~! p$ b3 f5 c* {
Linux内核是个伟大的工程,其源代码里还有很多精妙之处,值得C/C++程序员认真去阅读,即使我们不去做内核相关的工作,阅读精彩的代码对程序员自我修养的提高也是大有裨益的。. I/ |% k n6 g8 X4 s* e% S
6 I3 ~1 F0 J/ L2 G/ Q% N
|
|