TA的每日心情 | 怒 2019-11-20 15:22 |
|---|
签到天数: 2 天 [LV.1]初来乍到
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
6 I% l+ |7 \4 Z7 [) \1 k
(1)序列前向选择( SFS , Sequential Forward Selection )
4 X; s( }4 [ s Z/ T
8 n: K/ v$ |% A# l0 u算法描述:特征子集X从空集开始,每次选择一个特征x加入特征子集X,使得特征函数J( X)最优。简单说就是,每次都选择一个使得评价函数的取值达到最优的特征加入,其实就是一种简单的贪心算法。
s4 h j# D3 u& M" N" \" R6 t. r' w, u5 B# L
# a) P X) @! H5 t1 \
5 k. v9 W% N6 g" F' r
) @5 z/ G- q& n( t% d0 f1 j8 M
& i3 q F' ?$ w5 I6 H算法评价:缺点是只能加入特征而不能去除特征。例如:特征A完全依赖于特征B与C,可以认为如果加入了特征B与C则A就是多余的。假设序列前向选择算法首先将A加入特征集,然后又将B与C加入,那么特征子集中就包含了多余的特征A。
6 l( h. J/ Q2 \
, l( U! P0 ?! i$ B$ c, b3 p代码:3 G1 \8 {' d! Y% F# E' Q2 x) b8 M
7 t1 p8 F* \, ~: p3 ~- b; P- %----4.17编 顺序前进法特征选择 成功!
- ) t1 T- K `% r3 F
- clear;
- clc;
- %--------特征导入 请自行修改
- @9 G$ n6 ~9 C# D& @3 d- M=512;N=512;
- load coouRFeature16_0521_Aerial1 %%%共生矩阵 96.14%
- wfeature{1}=coourfeature(:,1);
- wfeature{2}=coourfeature(:,2);
- wfeature{3}=coourfeature(:,3);
- load fufeature_0521_SARAerial1_512%%复小波 98.26%
- for i=1:13
- wfeature{3+i}=wavefeature(:,i);
- end
- load wavefeature_0521_SARAerial1_512%%%非下采样小波 97.58%
- for i=1:7
- wfeature{16+i}=wavefeature(:,i);
- end
- load wavefeature_0521_Aerial1%%小波 97.65%
- for i=1:7
- wfeature{23+i}=wavefeature(:,i);
- end
- % load rwt_cofeature96_0423_lsy1
+ X3 @% v( z7 J- % for i=1:96
- # B9 ^( ^5 H/ F$ Z
- % wfeature{30+i}=feature(:,i);
- 0 k* @& v `; H2 V
- % end
- 4 K9 ^4 B6 L2 F
- %%%%%%%----------归一化
J& D( r' K! l1 c& I! k- [m n]=size(wfeature{1});
- for j=1:30%一共30组特征 这里 请自行修改
- mx=max(wfeature{j});
- mi=min(wfeature{j});
- mxx=(mx-mi);
- mii=ones([m n])*mi;
- wfeature{j}=(wfeature{j}-mii)./mxx;
- end
- %%---------------SFS 先选4个特征尝试
$ x. A; C. U* W: D: u/ ^- chosen=[];%%表示已选的特征
- chosen=[chosen 1];
- Jc=0;%%选出的J值
- for j=1:5 %选5个特征
- J=zeros([1 30]);
- for i=2:30 %一共30组特征 这里 请自行修改
- [mm nn]=size(chosen);
- for p=1:nn
- if i==chosen(p)
- J(i)=0;
- break;
- else
- J(i)=J(i)-sum(sum((wfeature{i}-wfeature{chosen(p)}).^2));
- end
- end
- end
- mi=min(J);
- for i=1:30
- if J(i)==0
- J(i)=mi;
- end
- end
- ma=max(J);
- for i=1:30
- if J(i)==ma
- chosen=[chosen i];
- break;
- end
- end
- end
- save Aerial1_6t_chosen chosen
- [mm nn]=size(chosen);
- tezh=[];
- for i=1:nn
- tezh=[tezh wfeature{chosen(i)}];
- end
- %%%%%%%%聚类
- * t) L; E0 C7 O# \0 t/ D, L! Y) m
- [IDC,U]=kmeans(tezh,2);
- cc(IDC==1,1)=0;
- cc(IDC==2,1)=0.75;
- 7 V! c; Z7 ?/ b; ?4 D( V0 q9 J
- g=reshape(cc,M,N);
- figure,imshow(g);9 |! y/ L3 G% Y$ \+ D- Y6 R: }2 C
& N/ Y, X& q, y1 l( F& a
" }" }# I% J* u1 P; t( n
(2)序列后向选择( SBS , Sequential Backward Selection )5 H. H: n* |: t7 ~1 a' |8 r
) a, N! i1 R1 n
算法描述:从特征全集O开始,每次从特征集O中剔除一个特征x,使得剔除特征x后评价函数值达到最优。% |9 Q4 P4 N' u. T4 x9 p
8 _' j) T* T! k- ]1 d8 q$ D& b算法评价:序列后向选择与序列前向选择正好相反,它的缺点是特征只能去除不能加入。
0 L. D( D5 {+ `: N- x3 T! C1 G5 z8 S2 p6 J6 I1 k4 K
. X2 k' H$ ]5 T# q, p
1 W& ~! e3 a0 H7 t
代码:
. v- f1 m0 {( T% C3 V' X. T' r( E. @5 v" g/ g9 p
- %----4.17编 顺序后退法特征选择
- & F1 Y8 b/ G. \( c5 m; f) }5 [3 N
- clear;
- clc;
- %--------特征导入 请自行修改
) a$ o$ K7 U% s- r8 E7 l# q- A=imread('lsy1.gif');
- [M N]=size(A);
- load coourfeature_0414_lsy1 %%%共生矩阵 96.14%
- feature{1}=coourfeature(:,1);
- feature{2}=coourfeature(:,2);
- feature{3}=coourfeature(:,3);
- load fuwavefeature_0413_lsy1 %%复小波 98.26%
- for i=1:13
- feature{3+i}=wavefeature(:,i);
- end
- load wavefeature_0413_feixia_lsy1%%%非下采样小波 97.58%
- for i=1:7
- feature{16+i}=wavefeature(:,i);
- end
- load wavefeature_0417_lsy1%%小波 97.65%
- for i=1:7
- feature{23+i}=wavefeature(:,i);
- end
- %%%%%%%----------归一化-归一化
1 j% z5 V d: y g- [m n]=size(feature{1});
- for j=1:30%一共30组特征 这里 请自行修改
- mx=max(feature{j});
- mi=min(feature{j});
- mxx=(mx-mi);
- mii=ones([m n])*mi;
- feature{j}=(feature{j}-mii)./mxx;
- end
- %%---------------SBS
- # Z7 {- J9 [! [2 Q
- chosen=[];dele=[];
- for i=1:30
- chosen=[chosen i];
- end
- ' N/ o1 b `$ h7 _( b2 q* o3 h
- for j=1:24 %%删10个,留20个
- J=zeros([1 30]);ii=0; %J(1)是删1的结果,J(2)是删除2 的结果......
- for i=1:30 %???dele 是必要的么???????????????????????%一共30组特征 这里 请自行修改
- [mm nn]=size(chosen);
- for p=1:nn
- if sum(i==dele)~=0
- J(i)=0;
- break;
- else
- for q=1:nn
- if (chosen(q)~=i) & (chosen(p)~=i)
- J(i)=J(i)-sum(sum((feature{chosen(q)}-feature{chosen(p)}).^2));
- end
- end
- end
- end
- end
- mi=min(J);
- for cc=1:30
- if J(cc)==0
- J(cc)=mi;
- end
- end
- [ma we]=max(J);
- dele=[dele we];
- for dd=1:nn
- if chosen(dd)==we
- chosen(dd)=[];
- end
- end
- % chosen=[2 4 5 6 7 8 9 11 12 13 14 19 20 22 23 26 27 28 29 30];
- 5 R6 L, V- y, M8 x% `% O0 I
- [mm nn]=size(chosen);
- tezh=[];
- for i=1:nn
- tezh=[tezh feature{chosen(i)}];
- end
- %%%%%%%%聚类
! w$ `* W* w5 B5 ?6 Q7 p- [IDC,U]=kmeans(tezh,2);
- cc(IDC==1,1)=0;
- cc(IDC==2,1)=0.75;
- g=reshape(cc,M,N);
- figure,imshow(g);
- %%%%%%%%%%%%计算正确率
- " c x6 {+ U1 j6 W; u
- ju=ones(M)*0.75;
- for i=1:M
- for j=1:M/2
- ju(i,j)=0;
- end
- end
- ju2=g-ju;
- prob=prod(size(find(ju2~=0)))/(m*n)
- 1-prob- t- \ |# Z* L
4 q0 o: A" ^: h/ F
; q& x# Q3 M* `另外,SFS与SBS都属于贪心算法,容易陷入局部最优值。 |
|