|
|
EDA365欢迎您登录!
您需要 登录 才可以下载或查看,没有帐号?注册
x
最大信息系数 maximal information coefficient (MIC),又称最大互信息系数。3 S8 i7 D0 i5 I( U" _1 j5 R
+ F+ D v2 V4 {
特征选择步骤% K& l0 Z1 u" C, h
3 |0 U" n+ |- b( j# q
①计算不同维度(特征)之间的MIC值,MIC值越大,说明这两个维度越接近。# S0 e4 U6 y/ ^8 C& K3 n
②寻找那些与其他维度MIC值较小的维度,根据阈值选出这些特征。$ B7 R: n6 s' v; K* Q9 d# R# a& j
③利用SVM训练
3 }6 ]' R1 {0 S, X7 ?2 `④训练结果在测试集上判断错误率6 ~9 S4 F9 M$ v D& q1 o3 a
. U! t& w0 h; |9 T( NMATLAB代码:
" R& y8 }9 b% d# q0 a& k
- Z/ C% c \' N, r! [- w- clc
- load train_F.mat;
- load train_L.mat;
- load test_F.mat;
- load test_L.mat;
- Dim = 22;
- MIC_matrix = zeros(Dim, Dim);
- for i = 1:Dim
- for j = 1:Dim
- X_v = reshape(train_F(:,i),1,size(train_F(:,i),1));
- Y_v = reshape(train_F(:,j),1,size(train_F(:,j),1));
- [A, ~] = mine(X_v, Y_v);
- MIC_matrix(i, j) = A.mic;
- end
- end
- MIC_matrix(MIC_matrix>0.4) = 0;
- MIC_matrix(MIC_matrix~=0) = 1;
- inmodel = sum(MIC_matrix);
- threshold = sum(inmodel)/Dim;
- inmodel(inmodel <= threshold) = 0;
- inmodel(inmodel > threshold) = 1;
- model = libsvmtrain(train_L,train_F(:,inmodel));
- [predict_label, ~, ~] = libsvmpredict(test_L,test_F(:,inmodel),model);
- error=0;
- for j=1:length(test_L)
- if(predict_label(j,1) ~= test_L(j,1))
- error = error+1;
- end
- end
- error = error/length(test_L);8 e* J/ u5 L$ E1 @0 o
|
|