找回密码
 注册
关于网站域名变更的通知
查看: 447|回复: 1
打印 上一主题 下一主题

NSGA-Ⅱ算法C++实现(测试函数为ZDT1)

[复制链接]

该用户从未签到

跳转到指定楼层
1#
发表于 2020-9-24 14:02 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式

EDA365欢迎您登录!

您需要 登录 才可以下载或查看,没有帐号?注册

x
本帖最后由 pulbieup 于 2020-9-24 14:04 编辑 6 a+ r9 M1 o0 l0 D. Q7 L4 g
+ t$ N5 g: t% h8 C8 f
在看C++实现之前,请先看一下NSGA-II算法概述:NSGA-II多目标遗传算法概述
! k2 W& c/ F; a, R; y- @1 r
8 d% e) H1 \' J6 ^2 w4 E, @8 \( s) |( v
NSGA-Ⅱ就是在第一代非支配排序遗传算法的基础上改进而来,其改进主要是针对如上所述的三个方面:
! r; B- R, h- _$ ~0 I5 \; g! Q; w5 `①提出了快速非支配排序算法,一方面降低了计算的复杂度,另一方面它将父代种群跟子代种群进行合并,使得下一代的种群从双倍的空间中进行选取,从而保留了最为优秀的所有个体;7 b% v9 O5 O1 D8 B6 x
②引进精英策略,保证某些优良的种群个体在进化过程中不会被丢弃,从而提高了优化结果的精度;
6 N9 O; k- V7 l/ l2 t+ p! |③采用拥挤度和拥挤度比较算子,不但克服了NSGA中需要人为指定共享参数的缺陷,而且将其作为种群中个体间的比较标准,使得准Pareto域中的个体能均匀地扩展到整个Pareto域,保证了种群的多样性。
/ T7 G+ Y+ p4 S9 }' x
2 `1 \5 K/ A5 V" _# V% @头文件:# C& I$ t9 b, Q
- D  ]) w2 q$ }$ T2 J
  • #include<stdio.h>
  • #include<stdlib.h>
  • #include<Windows.h>
  • #include<math.h>
  • #include<time.h>
  • #include<iostream>
  • #define Dimension 2//基因维数,在这里即ZDT1问题xi的i的最大值
  • #define popsize 100//种群大小
  • #define generation 500 //繁衍代数
  • #define URAND (rand()/(RAND_MAX+1.0))//产生随机数
  • int temp1[popsize];//临时数组
  • int mark[popsize];//标记数组
  • //以上两个数组用于产生新的子代
  • using namespace std;
    : y4 W# J1 K! d( L7 m% B
6 d2 f+ a$ G& Y* @

# q" ]: ~, d  F: c  c# l个体的类声明:
9 L. U5 V) I  w, ]$ q$ b1 R8 ~7 z- h( r
  • class individual
  • {
  • public:
  •     double value[Dimension];//xi的值
  •     int sp[2*popsize];
  •     //被支配个体集合SP。该量是可行解空间中所有被个体p支配的个体组成的集合。
  •     int np;
  •     //支配个数np。该量是在可行解空间中可以支配个体p的所以个体的数量。
  •     int is_dominated;//集合sp的个数
  •     void init();//初始化个体
  •     int rank;//优先级,Pareto级别为当前最高级
  •     double crowding_distance;//拥挤距离
  •     double fvalue[2];//ZDT1问题目标函数的值
  •     void f_count();//计算fvalue的值
  • };
    # f* R7 }3 ]+ Q- S

; J+ S# v9 }; I: J, `2 {8 l
, |# F* i& l0 w9 U- S$ K群体的类声明:
. l  U' w: K: x- b* V: I0 L
8 V; C/ G& \- k) p$ n7 N8 ]
  • class population
  • {
  • public:
  •     population();//类初始化
  •     individual P[popsize];
  •     individual Q[popsize];
  •     individual R[2*popsize];
  •     void set_p_q();
  •     //随机产生一个初始父代P,在此基础上采用二元锦标赛选择、
  •     //交叉和变异操作产生子代Q。P和Q群体规模均为popsize
  •     //将Pt和Qt并入到Rt中(初始时t=0),对Rt进行快速非支配解排序,
  •     //构造其所有不同等级的非支配解集F1、F2........
  •     int Rnum;
  •     int Pnum;
  •     int Qnum;
  •     //P,Q,R中元素的个数
  •     void make_new_pop();//产生新的子代
  •     void fast_nondominated_sort();//快速非支配排序
  •     void calu_crowding_distance(int i);//拥挤距离计算
  •     void f_sort(int i);//对拥挤距离降序排列
  •     void maincal();//主要操作
  •     int choice(int a,int b);
  •     //两个个体属于不同等级的非支配解集,优先考虑等级序号较小的
  •     //若两个个体属于同一等级的非支配解集,优先考虑拥挤距离较大的
  •     int len[2*popsize];//各个变异交叉后的群体Fi的长度的集合
  •     int len_f;//整个群体rank值
  • };% q# B0 X  {1 p# k

9 w) D2 J" M4 @, K1 R
# A# \9 v4 ^, [3 K: {8 ^全局变量及部分函数声明:
- Z9 J1 S: B; U$ R, F# [: p9 V+ [
3 t+ _) j" v5 r1 S$ g8 u% \4 C
  • individual F[2*popsize][2*popsize];
  • double rand_real(double low,double high)
  • //产生随机实数
  • {
  •     double h;
  •     h=(high-low)*URAND+low+0.001;
  •     if(h>=high)
  •         h=high-0.001;
  •     return h;
  • }
  • int rand_int(int low,int high)
  • //产生随机整数
  • {
  •     return int((high-low+1)*URAND)+low;
  • }2 l* {- y, \% [$ f8 ^
8 d/ j7 \) X; h. S
3 S& L8 q; }; R
关于排序函数qsort
" a: |+ R! ?2 z% \! S9 t; k* z0 N* I& d. h
void qsort( void *base, size_t num, size_t width, int (__cdecl *compare )
( n2 [$ ~8 T' Y# l& r- ]利用qsort对F数组按照cmp3排序
" k/ Q  b4 ]* P! S% F
  e1 u0 }! w0 |( v% Q( z
  • int cmp1(const void *a,const void *b)
  • //目标函数f1的升序排序
  • {
  •     const individual *e=(const individual *)a;
  •     const individual *f=(const individual *)b;
  •     if(e->fvalue[0]==f->fvalue[0])
  •         return 0;
  •     else if(e->fvalue[0]<f->fvalue[0])
  •         return -1;
  •     else return 1;
  • }
  • int cmp2(const void *a,const void *b)
  • //目标函数f2的升序排序
  • {
  •     const individual *e=(const individual *)a;
  •     const individual *f=(const individual *)b;
  •     if(e->fvalue[1]==f->fvalue[1])
  •         return 0;
  •     else if(e->fvalue[1]<f->fvalue[1])
  •         return -1;
  •     else return 1;
  • }
  • int cmp_c_d(const void *a,const void *b)
  • //对拥挤距离降序排序
  • {
  •     const individual *e=(const individual *)a;
  •     const individual *f=(const individual *)b;
  •     if(e->crowding_distance==f->crowding_distance)
  •         return 0;
  •     else if(e->crowding_distance<f->crowding_distance)
  •         return 1;
  •     else
  •         return -1;
  • }
  • void population::f_sort(int i)
  • {
  • int n;
  • n=len;
  • qsort(F,n,sizeof(individual),cmp_c_d);
  • }
    9 U6 Y: ?: K9 z- N
6 |8 [8 J6 O0 o! `% a6 [3 w7 d
- P3 G8 a+ x% u9 E" x' C7 S- U
群的初始化:
& w, G( g1 ?8 X
; M' C2 h$ A# J" h, ]* N3 f
  • population::population()
  • {
  •     int i;
  •     for(i=0;i<popsize;i++)
  •     {
  •         P.init();
  •     }
  •     for(i=0;i<popsize;i++)
  •     {
  •         P.f_count();
  •     }
  •     Pnum=popsize;
  •     Qnum=0;
  •     Rnum=0;
  • }& A# \* m3 G, J3 m8 [

3 @6 \3 O; n4 `, ?' V) ~  P/ I) x& k0 k$ y- t9 c  C
个体初始化:, P/ P9 _5 f) _
; f0 |2 n- g  K4 C! [* J# h6 m
  • void individual::init()
  • {
  •     for(int i=0;i<Dimension;i++)
  •         value=rand_real(0.0,1.0);
  • }5 X8 M2 p. p" [* a* \
6 F1 V1 z3 U% K  e. A* K

$ r. O/ B0 [3 A4 H0 X- ]  P3 M, R/ f6 y$ m, ?/ o- W6 g
利用二进制锦标赛产生子代:) L4 P' X( S0 R. C6 ]* U

4 H$ C1 e, [# _7 @( }$ t( F1、随机产生一个初始父代Po,在此基础上采用二元锦标赛选择、交叉和变异操作产生子代Qo, Po 和Qo群体规模均为N
; _+ o7 P& v, F2 u/ M2、将Pt和Qt并入到Rt中(初始时t=0),对Rt进行快速非支配解排序,构造其所有不同等级的非支配解集F1、F2……..
" [- `$ K& }4 [, @1 N3 D9 s3、按照需要计算Fi中所有个体的拥挤距离,并根据拥挤比较运算符构造Pt+1,直至Pt+1规模为N,图中的Fi为F3
- ?, v! ^4 _  g
" B6 r+ l4 t) u, R. y ; ^1 `) L6 S; m% z# z* C4 j
/ T4 U+ Q  k9 I( I; m: K5 ]

9 o( }- `2 {# x; f
  • void population::make_new_pop()
  • {
  •     int i,j,x,y,t1,t2,t3;
  •     double s,u,b;
  •     memset(mark,0,sizeof(mark));
  •     t3=0;
  •     while(t3<popsize/2)
  •     {
  •         while(t1=t2=rand_int(0,popsize-1),mark[t1]);
  •         while(t1==t2||mark[t2])
  •         {
  •             t2=rand_int(0,popsize-1);
  •         }
  •         t1=choice(t1,t2);
  •         temp1[t3++]=t1;
  •         mark[t1]=1;
  •     }
  •     for(i=0;i<popsize;i++)
  •     {
  •         s=rand_real(0.0,1.0);
  •         if(s<=0.9)
  •         {
  •             for(j=0;j<Dimension;j++)
  •             {
  •                 u=rand_real((0.0+1e-6),(1.0-1e-6));
  •                 if(u<=0.5)
  •                     b=pow(2*u,1.0/21);
  •                 else
  •                     b=1.0/pow(2*(1-u),1.0/21);
  •                 x=y=rand_int(0,popsize/2-1);
  •                 while(x==y)
  •                     y=rand_int(0,popsize/2-1);
  •                 Q.value[j]=1.0/2*((1-b)*P[temp1[x]].value[j]+(1+b)*P[temp1[y]].value[j]);
  •                 if(Q.value[j]<0)
  •                     Q.value[j]=1e-6;
  •                 else if(Q.value[j]>1)
  •                     Q.value[j]=1.0-(1e-6);
  •                 if(i+1<popsize)
  •                 {
  •                     Q[i+1].value[j]=1.0/2*((1+b)*P[temp1[x]].value[j]+(1-b)*P[temp1[y]].value[j]);
  •                     if(Q[i+1].value[j]<=0)
  •                         Q[i+1].value[j]=1e-6;
  •                     else if(Q[i+1].value[j]>1)
  •                         Q[i+1].value[j]=(1-1e-6);
  •                 }
  •             }
  •             i++;
  •         }
  •         else
  •         {
  •             for(j=0;j<Dimension;j++)
  •             {
  •                 x=rand_int(0,popsize/2-1);
  •                 u=rand_real(0.0+(1e-6),1.0-(1e-6));
  •                 if(u<0.5)
  •                     u=pow(2*u,1.0/21)-1;
  •                 else
  •                     u=1-pow(2*(1-u),1.0/21);
  •                 Q.value[j]=P[temp1[x]].value[j]+(1.0-0.0)*u;
  •                 if(Q.value[j]<0)
  •                     Q.value[j]=1e-6;
  •                 else if(Q.value[j]>1)
  •                     Q.value[j]=1-(1e-6);
  •             }
  •         }
  •     }
  •     Qnum=popsize;
  •     for(i=0;i<popsize;i++)
  •         Q.f_count();
  • }
    8 X. @7 _+ f$ ^9 g) e- V

8 `9 \7 j5 {& k9 L: K% I; R% E! ~* v" p3 k; V# J
  • void population::set_p_q()
  • {
  •     Rnum=0;
  •     Qnum=popsize;
  •     int i;
  •     for(i=0;i< Pnum;i++)
  •         R[Rnum++]=P;
  •     for(i=0;i<Qnum;i++)
  •         R[Rnum++]=Q;
  •     for(i=0;i<2*popsize;i++)
  •         R.f_count();
  • }/ }+ K' e' h0 ~, |
5 I; i; u: l/ a: M8 i
  V, o/ v& x$ A+ q: `
ZDT1问题函数值的计算:- v& B0 T2 I3 I9 r9 a  ~
. H) c) G/ j; {7 b- G

, {" X6 \# F5 S1 T9 g- p
+ N# s6 L+ f( Z3 S+ L
  • void individual::f_count()
  • {
  •     fvalue[0]=value[0];
  •     int i;
  •     double g=1,sum=0;
  •     for(i=1;i<Dimension;i++)
  •     {
  •         sum+=value;
  •     }
  •     sum+=9*(sum/(Dimension-1));
  •     g+=sum;
  •     fvalue[1]=g*(1-sqrt(value[0]/g));
  • }4 m) T8 J9 t  ^% a( d  O" a9 i. N

+ n, m0 ^1 ~2 |2 O4 ?7 Q% i$ a. Q3 N; l4 w; z& R9 C0 n
判断目标函数值是否被支配:3 a/ E% z3 }; v
- Q* k/ h1 S6 i) V0 n' R$ E
  • bool e_is_dominated(const individual &a,const individual &b)
  • {
  •     if((a.fvalue[0]<=b.fvalue[0])&&(a.fvalue[1]<=b.fvalue[1]))
  •     {
  •         if((a.fvalue[0]==b.fvalue[0])&&a.fvalue[1]==b.fvalue[1])
  •             return false;
  •         else
  •             return true;
  •     }
  •     else
  •         return false;
  • }
    7 r9 K4 M" Q! F( ^) k1 Z8 Q/ O

1 @5 l1 ^; x+ l! r" R( Z
0 F$ }. c8 y- h+ X0 Y' S* B快速非支配排序法:重点!!!
, D( D) l4 m5 `( A
$ R' H# y, K' @
  • void population::fast_nondominated_sort()
  • {
  •     int i,j,k;
  •     individual H[2*popsize];
  •     int h_len=0;
  •     for(i=0;i<2*popsize;i++)
  •     {
  •         R.np=0;
  •         R.is_dominated=0;
  •         len=0;
  •     }
  •     for(i=0;i<2*popsize;i++)
  •     {
  •         for(j=0;j<2*popsize;j++)
  •         {
  •             if(i!=j)
  •             {
  •                 if(e_is_dominated(R,R[j]))
  •                     R.sp[R.is_dominated++]=j;
  •                 else if(e_is_dominated(R[j],R))
  •                     R.np+=1;
  •             }
  •         }
  •         if(R.np==0)
  •         {
  •             len_f=1;
  •             F[0][len[0]++]=R;
  •         }
  •     }
  •     i=0;
  •     while(len!=0)
  •     {
  •         h_len=0;
  •         for(j=0;j<len;j++)
  •         {
  •             for(k=0;k<F[j].is_dominated;k++)
  •             {
  •                 R[F[j].sp[k]].np--;
  •                 if(R[F[j].sp[k]].np==0)
  •                 {
  •                     H[h_len++]=R[F[j].sp[k]];
  •                     R[F[j].sp[k]].rank=i+2;
  •                 }
  •             }
  •         }
  •         i++;
  •         len=h_len;
  •         if(h_len!=0)
  •         {
  •             len_f++;
  •             for(j=0;j<len;j++)
  •                 F[j]=H[j];
  •         }
  •     }
  • }6 O3 p" {3 p' n2 E

6 X. w4 w8 n* [4 D
( B, A. N* f0 c5 B- K9 B9 k! t/ G/ t. N1 b
计算拥挤距离:重点!!!具体解释见其他文章!!!
% z1 v. V- K4 p/ |9 X9 r) |: y5 L3 I! r
5 N5 p. \0 J7 t  N- g
9 a# G- `' {' ]) T8 M  @
5 E! l: i! `8 l; e$ A
  • void population::calu_crowding_distance(int i)
  • {
  •     int n=len;
  •     double m_max,m_min;
  •     int j;
  •     for(j=0;j<n;j++)
  •         F[j].crowding_distance=0;
  •     F[0].crowding_distance=F[n-1].crowding_distance=0xffffff;
  •     qsort(F,n,sizeof(individual),cmp1);
  •     m_max=-0xfffff;
  •     m_min=0xfffff;
  •     for(j=0;j<n;j++)
  •     {
  •         if(m_max<F[j].fvalue[0])
  •             m_max=F[j].fvalue[0];
  •         if(m_min>F[j].fvalue[0])
  •             m_min=F[j].fvalue[0];
  •     }
  •     for(j=1;j<n-1;j++)
  •         F[j].crowding_distance+=(F[j+1].fvalue[0]-F[j-1].fvalue[0])/(m_max-m_min);
  •     F[0].crowding_distance=F[n-1].crowding_distance=0xffffff;
  •     qsort(F,n,sizeof(individual),cmp2);
  •     m_max=-0xfffff;
  •     m_min=0xfffff;
  •     for(j=0;j<n;j++)
  •     {
  •         if(m_max<F[j].fvalue[1])
  •             m_max=F[j].fvalue[1];
  •         if(m_min>F[j].fvalue[1])
  •             m_min=F[j].fvalue[1];
  •     }
  •     for(j=1;j<n-1;j++)
  •         F[j].crowding_distance+=(F[j+1].fvalue[1]-F[j-1].fvalue[1])/(m_max-m_min);
  • }
    , s! [7 }, a! D& p

4 x8 o. H" i- ~* R$ t3 d  z
8 c, p3 ?- U: x1 o$ o采集多样性的选择:4 }( W: ^4 N; e7 ?
) u2 {! t; ~! J  ~6 t
  • int population::choice(int a,int b)
  • {
  •     if(P[a].rank<  P .rank)
  •         return a;
  •     else if(P[a].rank==P.rank)
  •     {
  •         if(P[a].crowding_distance>  P  .crowding_distance)
  •             return a;
  •         else
  •             return b;
  •     }
  •     else
  •         return b;
  • }
    - G& s) {# n% m4 {. s% t2 f+ G

. I! O) e. V& C  G" s3 m3 c! r
, r" d, Q- |' V+ W0 b
' v% E* w1 @" `$ }) \. y: q$ t$ \主要操作函数:
7 }4 s+ g- n3 s5 p4 [- L" Y8 o6 ~, z1 V" m4 v6 l
  • void population::maincal()
  • {
  •     int s,i,j;
  •     s=generation;
  •     make_new_pop();
  •     while(s--)
  •     {
  •         printf("The %d generation\n",s);
  •         set_p_q();
  •         fast_nondominated_sort();
  •         Pnum=0;
  •         i=0;
  •         while(Pnum+len<=popsize)
  •         {
  •             calu_crowding_distance(i);
  •             for(j=0;j<len;j++)
  •                 P[Pnum++]=F[j];
  •             i++;
  •             if(i>=len_f)break;
  •         }
  •         if(i<len_f)
  •         {
  •             calu_crowding_distance(i);
  •             f_sort(i);
  •         }
  •         for(j=0;j<popsize-Pnum;j++)
  •             P[Pnum++]=F[j];
  •         make_new_pop();
  •     }
  • }/ w, f* p, I. A* ?4 @8 g/ P
2 W* k/ Z' E) |9 p0 ?
: s3 k2 r3 Y! J8 z7 u) [
主函数:
; ^/ S1 M( t; K$ V. v) a3 W1 [
2 D) D! i8 V- b* K  U6 g, ]
  • int main()
  • {
  •     FILE *p;
  •     p=fopen("d:\\My_NSGA2.txt","w+");
  •     srand((unsigned int)(time(0)));
  •     population pop;
  •     pop.maincal();
  •     int i,j;
  •     fprintf(p,"XuYi All Rights Reserved.\nWelcome to OmegaXYZ: www.omegaxyz.com\n");
  •     fprintf(p,"Problem ZDT1\n");
  •     fprintf(p,"\n");
  •     for(i=0;i<popsize;i++)
  •     {
  •         fprintf(p,"The %d generation situation:\n",i);
  •         for(j=1;j<=Dimension;j++)
  •         {
  •             fprintf(p,"x%d=%e  ",j,pop.P.value[j]);
  •         }
  •         fprintf(p,"\n");
  •         fprintf(p,"f1(x)=%f   f2(x)=%f\n",pop.P.fvalue[0],pop.P.fvalue[1]);
  •     }
  •     fclose(p);
  •     return 1;
  • }4 [4 C3 P: M$ X% m0 F
. E$ F1 R/ z) \* f

$ g. s% z" U& c  Y& P+ n
; `2 `$ }/ N1 ?  X- WZDT1问题图像及前沿面。
8 _3 v% N1 M# W' w. e
: X: v4 ^7 P+ k7 ~3 g* n' v& E  W0 t& U0 ?

% C  L" S. A  m; S* O+ v/ y9 n
% j- R' I2 ^9 }. ~测试结果:; G$ C; K0 J: h# L( G1 U

该用户从未签到

2#
发表于 2020-9-24 14:51 | 只看该作者
NSGA-Ⅱ算法C++实现
您需要登录后才可以回帖 登录 | 注册

本版积分规则

关闭

推荐内容上一条 /1 下一条

EDA365公众号

关于我们|手机版|EDA365电子论坛网 ( 粤ICP备18020198号-1 )

GMT+8, 2025-11-24 21:43 , Processed in 0.187500 second(s), 26 queries , Gzip On.

深圳市墨知创新科技有限公司

地址:深圳市南山区科技生态园2栋A座805 电话:19926409050

快速回复 返回顶部 返回列表