|
|
方法一:2 d# Z- d9 T5 ?2 Y
先对曲线方程(x+y)^2*h/(G*L)]+(b+0.07*h)*(x+y)/L-0.85*x+0.07*G*b/L=0两侧同时对x求导# V* v4 J M5 U9 T
得到x,y(x),y'(x)的关系,并求出y'(x) = F( x,y(x) )的表达式8 o( c8 Q7 k3 p4 n7 ?( |5 q
然后将切线通过点的坐标(x0,y0)带入联立方程组中
+ S) Y$ R/ q; X& C3 X(y0 - y)/(x0 - x) == y'(x) 即 (y0 - y)/(x0 - x) == F( x,y ),几何意义是,通过已知点(x0,y0)以及曲线上一点(x,y)的直线的斜率是曲线在该点处的导数
' \2 E' N0 H. _ t% A+ E(x+y)^2*h/(G*L)]+(b+0.07*h)*(x+y)/L-0.85*x+0.07*G*b/L == 0,几何意义是,点(x,y)在曲线上
0 c8 g7 p, B$ k! I. g0 }7 m联立方程组求解,可以求得两个切点' o2 ]& b( }4 [
(7203/4 + (136073*sqrt(7/374))/8, -(1715/4) + (50519*sqrt(7/374))/8)与
# r7 F( { J: \% U8 {1 j1 ?(7203/4 - (136073*sqrt(7/374))/8, -(1715/4) - (50519*sqrt(7/374))/8); T6 L0 }! l& t! a* s5 A% k% P$ Z- b
数值解即(4127.74, 435.179)与(-526.244, -1292.68) |
|